Cargando…
Assessing Single-Cell Transcriptomic Variability through Density-Preserving Data Visualization
Nonlinear data-visualization methods, such as t-SNE and UMAP, summarize the complex transcriptomic landscape of single cells in 2D or 3D, but they neglect the local density of data points in the original space, often resulting in misleading visualizations where densely populated subsets of cells are...
Autores principales: | Narayan, Ashwin, Berger, Bonnie, Cho, Hyunghoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195812/ https://www.ncbi.nlm.nih.gov/pubmed/33462509 http://dx.doi.org/10.1038/s41587-020-00801-7 |
Ejemplares similares
-
Assessing transcriptomic reidentification risks using discriminative sequence models
por: Sadhuka, Shuvom, et al.
Publicado: (2023) -
Emerging technologies towards enhancing privacy in genomic data sharing
por: Berger, Bonnie, et al.
Publicado: (2019) -
Reconstructing Causal Biological Networks through Active Learning
por: Cho, Hyunghoon, et al.
Publicado: (2016) -
Sequre: a high-performance framework for secure multiparty computation enables biomedical data sharing
por: Smajlović, Haris, et al.
Publicado: (2023) -
Secure genome-wide association analysis using multiparty computation
por: Cho, Hyunghoon, et al.
Publicado: (2018)