Cargando…
Spectral collapse in anisotropic two-photon Rabi model
In this communication, based upon a squeezed-state trial wave function, we have performed a simple variational study of the spectral collapse in the anisotropic two-photon Rabi model. Our analysis indicates that the light-matter interaction and the spin-flipping (together with the anisotropy) effect...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196017/ https://www.ncbi.nlm.nih.gov/pubmed/34117313 http://dx.doi.org/10.1038/s41598-021-91915-8 |
_version_ | 1783706604936364032 |
---|---|
author | Lo, C. F. |
author_facet | Lo, C. F. |
author_sort | Lo, C. F. |
collection | PubMed |
description | In this communication, based upon a squeezed-state trial wave function, we have performed a simple variational study of the spectral collapse in the anisotropic two-photon Rabi model. Our analysis indicates that the light-matter interaction and the spin-flipping (together with the anisotropy) effectively constitute two competing impacts upon the radiation mode. Whilst the former tries to decrease the radiation mode frequency, the latter may counteract or reinforce it. The light-matter interaction appears to dominate the frequency modulation as its coupling strengths go beyond the critical values, leading to the emergence of the spectral collapse. However, at the critical couplings the dominance of the light-matter interaction is not complete, and incomplete spectral collapse appears. Accordingly, at the critical couplings the eigenenergy spectrum comprises both a set of discrete energy levels and a continuous energy spectrum. The discrete eigenenergy spectrum can be derived via a simple one-to-one mapping to the bound state problem of a particle of variable effective mass in a finite potential well, and the number of bound states available is determined by the energy difference between the two atomic levels. Each of these eigenenergies has a twofold degeneracy corresponding to the spin degree of freedom. |
format | Online Article Text |
id | pubmed-8196017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-81960172021-06-15 Spectral collapse in anisotropic two-photon Rabi model Lo, C. F. Sci Rep Article In this communication, based upon a squeezed-state trial wave function, we have performed a simple variational study of the spectral collapse in the anisotropic two-photon Rabi model. Our analysis indicates that the light-matter interaction and the spin-flipping (together with the anisotropy) effectively constitute two competing impacts upon the radiation mode. Whilst the former tries to decrease the radiation mode frequency, the latter may counteract or reinforce it. The light-matter interaction appears to dominate the frequency modulation as its coupling strengths go beyond the critical values, leading to the emergence of the spectral collapse. However, at the critical couplings the dominance of the light-matter interaction is not complete, and incomplete spectral collapse appears. Accordingly, at the critical couplings the eigenenergy spectrum comprises both a set of discrete energy levels and a continuous energy spectrum. The discrete eigenenergy spectrum can be derived via a simple one-to-one mapping to the bound state problem of a particle of variable effective mass in a finite potential well, and the number of bound states available is determined by the energy difference between the two atomic levels. Each of these eigenenergies has a twofold degeneracy corresponding to the spin degree of freedom. Nature Publishing Group UK 2021-06-11 /pmc/articles/PMC8196017/ /pubmed/34117313 http://dx.doi.org/10.1038/s41598-021-91915-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Lo, C. F. Spectral collapse in anisotropic two-photon Rabi model |
title | Spectral collapse in anisotropic two-photon Rabi model |
title_full | Spectral collapse in anisotropic two-photon Rabi model |
title_fullStr | Spectral collapse in anisotropic two-photon Rabi model |
title_full_unstemmed | Spectral collapse in anisotropic two-photon Rabi model |
title_short | Spectral collapse in anisotropic two-photon Rabi model |
title_sort | spectral collapse in anisotropic two-photon rabi model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196017/ https://www.ncbi.nlm.nih.gov/pubmed/34117313 http://dx.doi.org/10.1038/s41598-021-91915-8 |
work_keys_str_mv | AT locf spectralcollapseinanisotropictwophotonrabimodel |