Cargando…
In-vitro and in-vivo study of the interference between Rift Valley fever virus (clone 13) and Sheeppox/Lumpy Skin disease viruses
Viral interference is a common occurrence that has been reported in cell culture in many cases. In the present study, viral interference between two capripox viruses (sheeppox SPPV and lumpy skin disease virus LSDV in cattle) with Rift Valley fever virus (RVFV) was investigated in vitro and in their...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196192/ https://www.ncbi.nlm.nih.gov/pubmed/34117312 http://dx.doi.org/10.1038/s41598-021-91926-5 |
Sumario: | Viral interference is a common occurrence that has been reported in cell culture in many cases. In the present study, viral interference between two capripox viruses (sheeppox SPPV and lumpy skin disease virus LSDV in cattle) with Rift Valley fever virus (RVFV) was investigated in vitro and in their natural hosts, sheep and cattle. A combination of SPPV/RVFV and LSDV/RVFV was used to co-infect susceptible cells and animals to detect potential competition. In-vitro interference was evaluated by estimating viral infectivity and copies of viral RNA by a qPCR during three serial passages in cell cultures, whereas in-vivo interference was assessed through antibody responses to vaccination. When lamb testis primary cells were infected with the mixture of capripox and RVFV, the replication of both SPPV and LSDV was inhibited by RVFV. In animals, SPPV/RVFV or LSDV/RVFV combinations inhibited the replication SPPV and LSDV and the antibody response following vaccination. The combined SPPV/RVFV did not protect sheep after challenging with the virulent strain of SPPV and the LSDV/RVFV did not induce interferon Gamma to LSDV, while immunological response to RVFV remain unaffected. Our goal was to assess this interference response to RVFV/capripoxviruses’ coinfection in order to develop effective combined live-attenuated vaccines as a control strategy for RVF and SPP/LSD diseases. Our findings indicated that this approach was not suitable for developing a combined SPPV/LSDV/RVFV vaccine candidate because of interference of replication and the immune response among these viruses. |
---|