Cargando…

Endogenous bacteria inhabiting the Ophiocordyceps highlandensis during fruiting body development

BACKGROUND: The genus Ophiocordyceps, which includes Ophiocordyceps sinensis, has been demonstrated to be one of the most valuable medicinal taxa. The low rate of larval infection and slow development that characterize the cultivation of this genus should be urgently addressed. To identify potential...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chengpeng, Tang, Dexiang, Wang, Yuanbing, Fan, Qi, Zhang, Xiaomei, Cui, Xiaolong, Yu, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196446/
https://www.ncbi.nlm.nih.gov/pubmed/34116633
http://dx.doi.org/10.1186/s12866-021-02227-w
Descripción
Sumario:BACKGROUND: The genus Ophiocordyceps, which includes Ophiocordyceps sinensis, has been demonstrated to be one of the most valuable medicinal taxa. The low rate of larval infection and slow development that characterize the cultivation of this genus should be urgently addressed. To identify potential bioinoculants that stimulate the growth of Ophiocordyceps, O. highlandensis was selected as a model system, and a total of 72 samples were collected to systematically compare the microbial communities present during fruiting body development. By applying high-throughput 16S and ITS2 amplicon sequencing technology, the bacterial and fungal communities were identified in O. highlandensis and its surrounding soil, and the functional dynamics of the bacteria were explored. RESULTS: The results indicate that the most abundant bacteria across all the samples from O. highlandensis were Proteobacteria, Firmicutes and Bacteroidetes, while members of Ascomycota were detected among the fungi. The pathways enriched in the developmental stages were associated with carbohydrate degradation, nucleotides and pyridoxal biosynthesis, and the TCA cycle. Compared with that in the fungal community, an unexpectedly high taxonomic and functional fluctuation was discovered in the bacterial community during the maturation of O. highlandensis. Furthermore, bipartite network analysis identified four potential supercore OTUs associated with O. highlandensis growth. CONCLUSIONS: All the findings of this study suggest unexpectedly high taxonomic and functional fluctuations in the bacterial community of O. highlandensis during its maturation. O. highlandensis may recruit different endogenous bacteria across its life cycle to enhance growth and support rapid infection. These results may facilitate Ophiocordyceps cultivation and improve the development of strategies for the identification of potential bioinoculant resources. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12866-021-02227-w.