Cargando…
Development of a Wearable Camera and AI Algorithm for Medication Behavior Recognition
As many as 40% to 50% of patients do not adhere to long-term medications for managing chronic conditions, such as diabetes or hypertension. Limited opportunity for medication monitoring is a major problem from the perspective of health professionals. The availability of prompt medication error repor...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196696/ https://www.ncbi.nlm.nih.gov/pubmed/34064177 http://dx.doi.org/10.3390/s21113594 |
Sumario: | As many as 40% to 50% of patients do not adhere to long-term medications for managing chronic conditions, such as diabetes or hypertension. Limited opportunity for medication monitoring is a major problem from the perspective of health professionals. The availability of prompt medication error reports can enable health professionals to provide immediate interventions for patients. Furthermore, it can enable clinical researchers to modify experiments easily and predict health levels based on medication compliance. This study proposes a method in which videos of patients taking medications are recorded using a camera image sensor integrated into a wearable device. The collected data are used as a training dataset based on applying the latest convolutional neural network (CNN) technique. As for an artificial intelligence (AI) algorithm to analyze the medication behavior, we constructed an object detection model (Model 1) using the faster region-based CNN technique and a second model that uses the combined feature values to perform action recognition (Model 2). Moreover, 50,000 image data were collected from 89 participants, and labeling was performed on different data categories to train the algorithm. The experimental combination of the object detection model (Model 1) and action recognition model (Model 2) was newly developed, and the accuracy was 92.7%, which is significantly high for medication behavior recognition. This study is expected to enable rapid intervention for providers seeking to treat patients through rapid reporting of drug errors. |
---|