Cargando…
A Novel Versatile Approach for Underwater Conformal Volumetric Array Design
In this study, we present a novel approach to the design of a conformal volumetric array composed of M × N convex subarrays in two orthogonal curvilinear directions for underwater acoustic imaging for mine detection. Our design targets require that the proposed array transducer has three-dimensional...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196715/ https://www.ncbi.nlm.nih.gov/pubmed/34064151 http://dx.doi.org/10.3390/s21113591 |
_version_ | 1783706750215520256 |
---|---|
author | Yusuf, Taofeek Ayotunde Pyo, Seonghun Roh, Yongrae |
author_facet | Yusuf, Taofeek Ayotunde Pyo, Seonghun Roh, Yongrae |
author_sort | Yusuf, Taofeek Ayotunde |
collection | PubMed |
description | In this study, we present a novel approach to the design of a conformal volumetric array composed of M × N convex subarrays in two orthogonal curvilinear directions for underwater acoustic imaging for mine detection. Our design targets require that the proposed array transducer has three-dimensional half-power beamwidths of 85° and 25° in either of its convex subarray parts, while also reaching a peak transmitting voltage response above 147 dB. The radiated sound pressure of the subarrays was independently derived as a function of their geometrical parameters. The resulting directional factors were then combined to analyze the beam profile of the entire array. The design was finally optimized to minimize the ripple level. To validate this theoretical design, the structure was modeled and analyzed using the finite element method. The comparison between the resulting beam pattern from the finite element analysis and the analytical computation showed an excellent compliance. The method advanced is a simple and systematic analytical model to facilitate the development of new conformal volumetric arrays for underwater mine detection. |
format | Online Article Text |
id | pubmed-8196715 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81967152021-06-13 A Novel Versatile Approach for Underwater Conformal Volumetric Array Design Yusuf, Taofeek Ayotunde Pyo, Seonghun Roh, Yongrae Sensors (Basel) Article In this study, we present a novel approach to the design of a conformal volumetric array composed of M × N convex subarrays in two orthogonal curvilinear directions for underwater acoustic imaging for mine detection. Our design targets require that the proposed array transducer has three-dimensional half-power beamwidths of 85° and 25° in either of its convex subarray parts, while also reaching a peak transmitting voltage response above 147 dB. The radiated sound pressure of the subarrays was independently derived as a function of their geometrical parameters. The resulting directional factors were then combined to analyze the beam profile of the entire array. The design was finally optimized to minimize the ripple level. To validate this theoretical design, the structure was modeled and analyzed using the finite element method. The comparison between the resulting beam pattern from the finite element analysis and the analytical computation showed an excellent compliance. The method advanced is a simple and systematic analytical model to facilitate the development of new conformal volumetric arrays for underwater mine detection. MDPI 2021-05-21 /pmc/articles/PMC8196715/ /pubmed/34064151 http://dx.doi.org/10.3390/s21113591 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yusuf, Taofeek Ayotunde Pyo, Seonghun Roh, Yongrae A Novel Versatile Approach for Underwater Conformal Volumetric Array Design |
title | A Novel Versatile Approach for Underwater Conformal Volumetric Array Design |
title_full | A Novel Versatile Approach for Underwater Conformal Volumetric Array Design |
title_fullStr | A Novel Versatile Approach for Underwater Conformal Volumetric Array Design |
title_full_unstemmed | A Novel Versatile Approach for Underwater Conformal Volumetric Array Design |
title_short | A Novel Versatile Approach for Underwater Conformal Volumetric Array Design |
title_sort | novel versatile approach for underwater conformal volumetric array design |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196715/ https://www.ncbi.nlm.nih.gov/pubmed/34064151 http://dx.doi.org/10.3390/s21113591 |
work_keys_str_mv | AT yusuftaofeekayotunde anovelversatileapproachforunderwaterconformalvolumetricarraydesign AT pyoseonghun anovelversatileapproachforunderwaterconformalvolumetricarraydesign AT rohyongrae anovelversatileapproachforunderwaterconformalvolumetricarraydesign AT yusuftaofeekayotunde novelversatileapproachforunderwaterconformalvolumetricarraydesign AT pyoseonghun novelversatileapproachforunderwaterconformalvolumetricarraydesign AT rohyongrae novelversatileapproachforunderwaterconformalvolumetricarraydesign |