Cargando…
A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise
In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD (RSMC-PHD) fi...
Autores principales: | Gong, Yang, Cui, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196810/ https://www.ncbi.nlm.nih.gov/pubmed/34067296 http://dx.doi.org/10.3390/s21113611 |
Ejemplares similares
-
Multi-Target State Extraction for the SMC-PHD Filter
por: Si, Weijian, et al.
Publicado: (2016) -
Cubature Information SMC-PHD for Multi-Target Tracking
por: Liu, Zhe, et al.
Publicado: (2016) -
Robust Interacting Multiple Model Filter Based on Student’s t-Distribution for Heavy-Tailed Measurement Noises
por: Li, Dong, et al.
Publicado: (2019) -
An Adaptive Filter for Nonlinear Multi-Sensor Systems with Heavy-Tailed Noise
por: Dong, Xiangxiang, et al.
Publicado: (2020) -
Scene-Specialized Multitarget Detector with an SMC-PHD Filter and a YOLO Network
por: Liu, Qianli, et al.
Publicado: (2022)