Cargando…
Effect of Pig-Adipose-Derived Stem Cells’ Conditioned Media on Skin Wound-Healing Characteristics In Vitro
The primary mechanism by which adipose-derived stem cells (ASCs) exert their reparative or regenerative potential relies predominantly on paracrine action. Secretory abilities of ASCs have been found to be amplified by hypoxia pre-conditioning. This study investigates the impact of hypoxia (1% O(2))...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196863/ https://www.ncbi.nlm.nih.gov/pubmed/34067360 http://dx.doi.org/10.3390/ijms22115469 |
_version_ | 1783706785687797760 |
---|---|
author | Wiśniewska, Joanna Słyszewska, Magda Stałanowska, Karolina Walendzik, Katarzyna Kopcewicz, Marta Machcińska, Sylwia Gawrońska-Kozak, Barbara |
author_facet | Wiśniewska, Joanna Słyszewska, Magda Stałanowska, Karolina Walendzik, Katarzyna Kopcewicz, Marta Machcińska, Sylwia Gawrońska-Kozak, Barbara |
author_sort | Wiśniewska, Joanna |
collection | PubMed |
description | The primary mechanism by which adipose-derived stem cells (ASCs) exert their reparative or regenerative potential relies predominantly on paracrine action. Secretory abilities of ASCs have been found to be amplified by hypoxia pre-conditioning. This study investigates the impact of hypoxia (1% O(2)) on the secretome composition of pig ASCs (pASCs) and explores the effect of pASCs’ conditioned media (CM) on skin cell functions in vitro and the expression of markers attributed to wound healing. Exposure of pASCs to hypoxia increased levels of vascular endothelial growth factor (VEGF) in CM-Hyp compared to CM collected from the cells cultured in normoxia (CM-Nor). CM-Hyp promoted the migratory ability of pig keratinocytes (pKERs) and delayed migration of pig dermal fibroblasts (pDFs). Exposure of pKERs to either CM-Nor or CM-Hyp decreased the levels of pro-fibrotic indicators WNT10A and WNT11. Furthermore, CM-Hyp enhanced the expression of KRT14, the marker of the basal epidermis layer. In contrast, CM-Nor showed a stronger effect on pDFs manifested by increases in TGFB1, COL1A1, COL3A1, and FN1 mRNA expression. The formation of three-dimensional endothelial cell networks was improved in the presence of CM-Hyp. Overall, our results demonstrate that the paracrine activity of pASCs affects skin cells, and this property might be used to modulate wound healing. |
format | Online Article Text |
id | pubmed-8196863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81968632021-06-13 Effect of Pig-Adipose-Derived Stem Cells’ Conditioned Media on Skin Wound-Healing Characteristics In Vitro Wiśniewska, Joanna Słyszewska, Magda Stałanowska, Karolina Walendzik, Katarzyna Kopcewicz, Marta Machcińska, Sylwia Gawrońska-Kozak, Barbara Int J Mol Sci Article The primary mechanism by which adipose-derived stem cells (ASCs) exert their reparative or regenerative potential relies predominantly on paracrine action. Secretory abilities of ASCs have been found to be amplified by hypoxia pre-conditioning. This study investigates the impact of hypoxia (1% O(2)) on the secretome composition of pig ASCs (pASCs) and explores the effect of pASCs’ conditioned media (CM) on skin cell functions in vitro and the expression of markers attributed to wound healing. Exposure of pASCs to hypoxia increased levels of vascular endothelial growth factor (VEGF) in CM-Hyp compared to CM collected from the cells cultured in normoxia (CM-Nor). CM-Hyp promoted the migratory ability of pig keratinocytes (pKERs) and delayed migration of pig dermal fibroblasts (pDFs). Exposure of pKERs to either CM-Nor or CM-Hyp decreased the levels of pro-fibrotic indicators WNT10A and WNT11. Furthermore, CM-Hyp enhanced the expression of KRT14, the marker of the basal epidermis layer. In contrast, CM-Nor showed a stronger effect on pDFs manifested by increases in TGFB1, COL1A1, COL3A1, and FN1 mRNA expression. The formation of three-dimensional endothelial cell networks was improved in the presence of CM-Hyp. Overall, our results demonstrate that the paracrine activity of pASCs affects skin cells, and this property might be used to modulate wound healing. MDPI 2021-05-22 /pmc/articles/PMC8196863/ /pubmed/34067360 http://dx.doi.org/10.3390/ijms22115469 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wiśniewska, Joanna Słyszewska, Magda Stałanowska, Karolina Walendzik, Katarzyna Kopcewicz, Marta Machcińska, Sylwia Gawrońska-Kozak, Barbara Effect of Pig-Adipose-Derived Stem Cells’ Conditioned Media on Skin Wound-Healing Characteristics In Vitro |
title | Effect of Pig-Adipose-Derived Stem Cells’ Conditioned Media on Skin Wound-Healing Characteristics In Vitro |
title_full | Effect of Pig-Adipose-Derived Stem Cells’ Conditioned Media on Skin Wound-Healing Characteristics In Vitro |
title_fullStr | Effect of Pig-Adipose-Derived Stem Cells’ Conditioned Media on Skin Wound-Healing Characteristics In Vitro |
title_full_unstemmed | Effect of Pig-Adipose-Derived Stem Cells’ Conditioned Media on Skin Wound-Healing Characteristics In Vitro |
title_short | Effect of Pig-Adipose-Derived Stem Cells’ Conditioned Media on Skin Wound-Healing Characteristics In Vitro |
title_sort | effect of pig-adipose-derived stem cells’ conditioned media on skin wound-healing characteristics in vitro |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196863/ https://www.ncbi.nlm.nih.gov/pubmed/34067360 http://dx.doi.org/10.3390/ijms22115469 |
work_keys_str_mv | AT wisniewskajoanna effectofpigadiposederivedstemcellsconditionedmediaonskinwoundhealingcharacteristicsinvitro AT słyszewskamagda effectofpigadiposederivedstemcellsconditionedmediaonskinwoundhealingcharacteristicsinvitro AT stałanowskakarolina effectofpigadiposederivedstemcellsconditionedmediaonskinwoundhealingcharacteristicsinvitro AT walendzikkatarzyna effectofpigadiposederivedstemcellsconditionedmediaonskinwoundhealingcharacteristicsinvitro AT kopcewiczmarta effectofpigadiposederivedstemcellsconditionedmediaonskinwoundhealingcharacteristicsinvitro AT machcinskasylwia effectofpigadiposederivedstemcellsconditionedmediaonskinwoundhealingcharacteristicsinvitro AT gawronskakozakbarbara effectofpigadiposederivedstemcellsconditionedmediaonskinwoundhealingcharacteristicsinvitro |