Cargando…
Fault Diagnosis and Fault Frequency Determination of Permanent Magnet Synchronous Motor Based on Deep Learning
The early diagnosis of a motor is important. Many researchers have used deep learning to diagnose motor applications. This paper proposes a one-dimensional convolutional neural network for the diagnosis of permanent magnet synchronous motors. The one-dimensional convolutional neural network model is...
Autores principales: | Wang, Chiao-Sheng, Kao, I-Hsi, Perng, Jau-Woei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196902/ https://www.ncbi.nlm.nih.gov/pubmed/34067249 http://dx.doi.org/10.3390/s21113608 |
Ejemplares similares
-
Multi-Sensor Fault Diagnosis of Underwater Thruster Propeller Based on Deep Learning
por: Tsai, Chia-Ming, et al.
Publicado: (2021) -
Fault Diagnosis of Permanent Magnet Synchronous Motor Based on Stacked Denoising Autoencoder
por: Xu, Xiaowei, et al.
Publicado: (2021) -
Vibration and current dataset of three-phase permanent magnet synchronous motors with stator faults
por: Jung, Wonho, et al.
Publicado: (2023) -
Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current Signal Processing and Machine Learning Algorithms
por: Pietrzak, Przemyslaw, et al.
Publicado: (2023) -
Analytical Modeling and Analysis of Permanent-Magnet Motor with Demagnetization Fault
por: Shi, Cenwei, et al.
Publicado: (2022)