Cargando…
THz Sensing of Human Skin: A Review of Skin Modeling Approaches
The non-ionizing and non-invasive nature of THz radiation, combined with its high sensitivity to water, has made THz imaging and spectroscopy highly attractive for in vivo biomedical applications for many years. Among them, the skin is primarily investigated due to the short penetration depth of THz...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197005/ https://www.ncbi.nlm.nih.gov/pubmed/34070962 http://dx.doi.org/10.3390/s21113624 |
_version_ | 1783706819380641792 |
---|---|
author | Wang, Jiarui Lindley-Hatcher, Hannah Chen, Xuequan Pickwell-MacPherson, Emma |
author_facet | Wang, Jiarui Lindley-Hatcher, Hannah Chen, Xuequan Pickwell-MacPherson, Emma |
author_sort | Wang, Jiarui |
collection | PubMed |
description | The non-ionizing and non-invasive nature of THz radiation, combined with its high sensitivity to water, has made THz imaging and spectroscopy highly attractive for in vivo biomedical applications for many years. Among them, the skin is primarily investigated due to the short penetration depth of THz waves caused by the high attenuation by water in biological samples. However, a complete model of skin describing the THz–skin interaction is still needed. This is also fundamental to reveal the optical properties of the skin from the measured THz spectrum. It is crucial that the correct model is used, not just to ensure compatibility between different works, but more importantly to ensure the reliability of the data and conclusions. Therefore, in this review, we summarize the models applied to skin used in the THz regime, and we compare their adaptability, accuracy, and limitations. We show that most of the models attempt to extract the hydration profile inside the skin while there is also the anisotropic model that displays skin structural changes in the stratum corneum. |
format | Online Article Text |
id | pubmed-8197005 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81970052021-06-13 THz Sensing of Human Skin: A Review of Skin Modeling Approaches Wang, Jiarui Lindley-Hatcher, Hannah Chen, Xuequan Pickwell-MacPherson, Emma Sensors (Basel) Review The non-ionizing and non-invasive nature of THz radiation, combined with its high sensitivity to water, has made THz imaging and spectroscopy highly attractive for in vivo biomedical applications for many years. Among them, the skin is primarily investigated due to the short penetration depth of THz waves caused by the high attenuation by water in biological samples. However, a complete model of skin describing the THz–skin interaction is still needed. This is also fundamental to reveal the optical properties of the skin from the measured THz spectrum. It is crucial that the correct model is used, not just to ensure compatibility between different works, but more importantly to ensure the reliability of the data and conclusions. Therefore, in this review, we summarize the models applied to skin used in the THz regime, and we compare their adaptability, accuracy, and limitations. We show that most of the models attempt to extract the hydration profile inside the skin while there is also the anisotropic model that displays skin structural changes in the stratum corneum. MDPI 2021-05-23 /pmc/articles/PMC8197005/ /pubmed/34070962 http://dx.doi.org/10.3390/s21113624 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Wang, Jiarui Lindley-Hatcher, Hannah Chen, Xuequan Pickwell-MacPherson, Emma THz Sensing of Human Skin: A Review of Skin Modeling Approaches |
title | THz Sensing of Human Skin: A Review of Skin Modeling Approaches |
title_full | THz Sensing of Human Skin: A Review of Skin Modeling Approaches |
title_fullStr | THz Sensing of Human Skin: A Review of Skin Modeling Approaches |
title_full_unstemmed | THz Sensing of Human Skin: A Review of Skin Modeling Approaches |
title_short | THz Sensing of Human Skin: A Review of Skin Modeling Approaches |
title_sort | thz sensing of human skin: a review of skin modeling approaches |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197005/ https://www.ncbi.nlm.nih.gov/pubmed/34070962 http://dx.doi.org/10.3390/s21113624 |
work_keys_str_mv | AT wangjiarui thzsensingofhumanskinareviewofskinmodelingapproaches AT lindleyhatcherhannah thzsensingofhumanskinareviewofskinmodelingapproaches AT chenxuequan thzsensingofhumanskinareviewofskinmodelingapproaches AT pickwellmacphersonemma thzsensingofhumanskinareviewofskinmodelingapproaches |