Cargando…
Analysis of Non-Stationarity for 5.9 GHz Channel in Multiple Vehicle-to-Vehicle Scenarios
The vehicle-to-vehicle (V2V) radio channel is non-stationary due to the rapid movement of vehicles. However, the stationarity of the V2V channels is an important indicator of the V2V channel characteristics. Therefore, we analyzed the non-stationarity of V2V radio channels using the local region of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197023/ https://www.ncbi.nlm.nih.gov/pubmed/34070976 http://dx.doi.org/10.3390/s21113626 |
Sumario: | The vehicle-to-vehicle (V2V) radio channel is non-stationary due to the rapid movement of vehicles. However, the stationarity of the V2V channels is an important indicator of the V2V channel characteristics. Therefore, we analyzed the non-stationarity of V2V radio channels using the local region of stationarity (LRS). We selected seven scenarios, including three directions of travel, i.e., in the same, vertical, and opposite directions, and different speeds and environments in a similar driving direction. The power delay profile (PDP) and LRS were estimated from the measured channel impulse responses. The results show that the most important influences on the stationary times are the direction and the speed of the vehicles. The average stationary times for driving in the same direction range from 0.3207 to 1.9419 s, the average stationary times for driving in the vertical direction are 0.0359–0.1348 s, and those for driving in the opposite direction are 0.0041–0.0103 s. These results are meaningful for the analysis of the statistical characteristics of the V2V channel, such as the delay spread and Doppler spread. Small-scale fading based on the stationary times affects the quality of signals transmitted in the V2V channel, including the information transmission rate and the information error code rate. |
---|