Cargando…
EMG and Joint Angle-Based Machine Learning to Predict Future Joint Angles at the Knee
Electromyography (EMG) is commonly used to measure electrical activity of the skeletal muscles. As exoskeleton technology advances, these signals may be used to predict human intent for control purposes. This study used an artificial neural network trained and tested with knee flexion angles and kne...
Autores principales: | Coker, Jordan, Chen, Howard, Schall, Mark C., Gallagher, Sean, Zabala, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197024/ https://www.ncbi.nlm.nih.gov/pubmed/34067477 http://dx.doi.org/10.3390/s21113622 |
Ejemplares similares
-
Gaussian Process Autoregression for Joint Angle Prediction Based on sEMG Signals
por: Liang, Jie, et al.
Publicado: (2021) -
Estimation of Knee Joint Angle from Surface EMG Using Multiple Kernels Relevance Vector Regression
por: Li, Hui-Bin, et al.
Publicado: (2023) -
Neural network committees for finger joint angle estimation from surface EMG signals
por: Shrirao, Nikhil A, et al.
Publicado: (2009) -
MyoNet: A Transfer-Learning-Based LRCN for Lower Limb Movement Recognition and Knee Joint Angle Prediction for Remote Monitoring of Rehabilitation Progress From sEMG
Publicado: (2020) -
Lower Body Joint Angle Prediction Using Machine Learning and Applied Biomechanical Inverse Dynamics
por: Choffin, Zachary, et al.
Publicado: (2022)