Cargando…
Antiviral efficacy of short-hairpin RNAs and artificial microRNAs targeting foot-and-mouth disease virus
RNA interference (RNAi) is a well-conserved mechanism in eukaryotic cells that directs post-transcriptional gene silencing through small RNA molecules. RNAi has been proposed as an alternative approach for rapid and specific control of viruses including foot-and-mouth disease virus (FMDV), the causa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197037/ https://www.ncbi.nlm.nih.gov/pubmed/34178434 http://dx.doi.org/10.7717/peerj.11227 |
_version_ | 1783706826552901632 |
---|---|
author | Currá, Anabella Cacciabue, Marco Gravisaco, María José Asurmendi, Sebastián Taboga, Oscar Gismondi, María I. |
author_facet | Currá, Anabella Cacciabue, Marco Gravisaco, María José Asurmendi, Sebastián Taboga, Oscar Gismondi, María I. |
author_sort | Currá, Anabella |
collection | PubMed |
description | RNA interference (RNAi) is a well-conserved mechanism in eukaryotic cells that directs post-transcriptional gene silencing through small RNA molecules. RNAi has been proposed as an alternative approach for rapid and specific control of viruses including foot-and-mouth disease virus (FMDV), the causative agent of a devastating animal disease with high economic impact. The aim of this work was to assess the antiviral activity of different small RNA shuttles targeting the FMDV RNA-dependent RNA polymerase coding sequence (3D). Three target sequences were predicted within 3D considering RNA accessibility as a major criterion. The silencing efficacy of short-hairpin RNAs (shRNAs) and artificial microRNAs (amiRNAs) targeting the selected sequences was confirmed in fluorescent reporter assays. Furthermore, BHK-21 cells transiently expressing shRNAs or amiRNAs proved 70 to >95% inhibition of FMDV growth. Interestingly, dual expression of amiRNAs did not improve FMDV silencing. Lastly, stable cell lines constitutively expressing amiRNAs were established and characterized in terms of antiviral activity against FMDV. As expected, viral replication in these cell lines was delayed. These results show that the target RNA-accessibility-guided approach for RNAi design rendered efficient amiRNAs that constrain FMDV replication. The application of amiRNAs to complement FMDV vaccination in specific epidemiological scenarios shall be explored further. |
format | Online Article Text |
id | pubmed-8197037 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-81970372021-06-24 Antiviral efficacy of short-hairpin RNAs and artificial microRNAs targeting foot-and-mouth disease virus Currá, Anabella Cacciabue, Marco Gravisaco, María José Asurmendi, Sebastián Taboga, Oscar Gismondi, María I. PeerJ Biotechnology RNA interference (RNAi) is a well-conserved mechanism in eukaryotic cells that directs post-transcriptional gene silencing through small RNA molecules. RNAi has been proposed as an alternative approach for rapid and specific control of viruses including foot-and-mouth disease virus (FMDV), the causative agent of a devastating animal disease with high economic impact. The aim of this work was to assess the antiviral activity of different small RNA shuttles targeting the FMDV RNA-dependent RNA polymerase coding sequence (3D). Three target sequences were predicted within 3D considering RNA accessibility as a major criterion. The silencing efficacy of short-hairpin RNAs (shRNAs) and artificial microRNAs (amiRNAs) targeting the selected sequences was confirmed in fluorescent reporter assays. Furthermore, BHK-21 cells transiently expressing shRNAs or amiRNAs proved 70 to >95% inhibition of FMDV growth. Interestingly, dual expression of amiRNAs did not improve FMDV silencing. Lastly, stable cell lines constitutively expressing amiRNAs were established and characterized in terms of antiviral activity against FMDV. As expected, viral replication in these cell lines was delayed. These results show that the target RNA-accessibility-guided approach for RNAi design rendered efficient amiRNAs that constrain FMDV replication. The application of amiRNAs to complement FMDV vaccination in specific epidemiological scenarios shall be explored further. PeerJ Inc. 2021-06-09 /pmc/articles/PMC8197037/ /pubmed/34178434 http://dx.doi.org/10.7717/peerj.11227 Text en ©2021 Currá et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Biotechnology Currá, Anabella Cacciabue, Marco Gravisaco, María José Asurmendi, Sebastián Taboga, Oscar Gismondi, María I. Antiviral efficacy of short-hairpin RNAs and artificial microRNAs targeting foot-and-mouth disease virus |
title | Antiviral efficacy of short-hairpin RNAs and artificial microRNAs targeting foot-and-mouth disease virus |
title_full | Antiviral efficacy of short-hairpin RNAs and artificial microRNAs targeting foot-and-mouth disease virus |
title_fullStr | Antiviral efficacy of short-hairpin RNAs and artificial microRNAs targeting foot-and-mouth disease virus |
title_full_unstemmed | Antiviral efficacy of short-hairpin RNAs and artificial microRNAs targeting foot-and-mouth disease virus |
title_short | Antiviral efficacy of short-hairpin RNAs and artificial microRNAs targeting foot-and-mouth disease virus |
title_sort | antiviral efficacy of short-hairpin rnas and artificial micrornas targeting foot-and-mouth disease virus |
topic | Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197037/ https://www.ncbi.nlm.nih.gov/pubmed/34178434 http://dx.doi.org/10.7717/peerj.11227 |
work_keys_str_mv | AT curraanabella antiviralefficacyofshorthairpinrnasandartificialmicrornastargetingfootandmouthdiseasevirus AT cacciabuemarco antiviralefficacyofshorthairpinrnasandartificialmicrornastargetingfootandmouthdiseasevirus AT gravisacomariajose antiviralefficacyofshorthairpinrnasandartificialmicrornastargetingfootandmouthdiseasevirus AT asurmendisebastian antiviralefficacyofshorthairpinrnasandartificialmicrornastargetingfootandmouthdiseasevirus AT tabogaoscar antiviralefficacyofshorthairpinrnasandartificialmicrornastargetingfootandmouthdiseasevirus AT gismondimariai antiviralefficacyofshorthairpinrnasandartificialmicrornastargetingfootandmouthdiseasevirus |