Cargando…
Transformational Role of Medical Imaging in (Radiation) Oncology
SIMPLE SUMMARY: Onboard, imaging techniques have brought about a huge transformation in the ability to deliver targeted radiation therapies. Each generation of these technologies enables us to better visualize where to deliver lethal doses of radiation and thus allows the shrinking of necessary geom...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197089/ https://www.ncbi.nlm.nih.gov/pubmed/34070984 http://dx.doi.org/10.3390/cancers13112557 |
Sumario: | SIMPLE SUMMARY: Onboard, imaging techniques have brought about a huge transformation in the ability to deliver targeted radiation therapies. Each generation of these technologies enables us to better visualize where to deliver lethal doses of radiation and thus allows the shrinking of necessary geometric margins leading to reduced toxicities. Alongside improvements in treatment delivery, advances in medical imaging have also allowed us to better define the volumes we wish to target. The development of imaging techniques that can capture aspects of the tumor’s biology before, during and after therapy is transforming how treatment can be delivered. Technological changes have further made these biological imaging techniques available in real-time providing the opportunity to monitor a patient’s response to treatment closely and often before any volume changes are visible on conventional radiological images. Here we discuss the development of robust quantitative imaging biomarkers and how they can personalize therapy towards meaningful clinical endpoints. ABSTRACT: Onboard, real-time, imaging techniques, from the original megavoltage planar imaging devices, to the emerging combined MRI-Linear Accelerators, have brought a huge transformation in the ability to deliver targeted radiation therapies. Each generation of these technologies enables lethal doses of radiation to be delivered to target volumes with progressively more accuracy and thus allows shrinking of necessary geometric margins, leading to reduced toxicities. Alongside these improvements in treatment delivery, advances in medical imaging, e.g., PET, and MRI, have also allowed target volumes themselves to be better defined. The development of functional and molecular imaging is now driving a conceptually larger step transformation to both better understand the cancer target and disease to be treated, as well as how tumors respond to treatment. A biological description of the tumor microenvironment is now accepted as an essential component of how to personalize and adapt treatment. This applies not only to radiation oncology but extends widely in cancer management from surgical oncology planning and interventional radiology, to evaluation of targeted drug delivery efficacy in medical oncology/immunotherapy. Here, we will discuss the role and requirements of functional and metabolic imaging techniques in the context of brain tumors and metastases to reliably provide multi-parametric imaging biomarkers of the tumor microenvironment. |
---|