Cargando…
An Adaptive Unsupervised Feature Selection Algorithm Based on MDS for Tumor Gene Data Classification
Identifying the key genes related to tumors from gene expression data with a large number of features is important for the accurate classification of tumors and to make special treatment decisions. In recent years, unsupervised feature selection algorithms have attracted considerable attention in th...
Autores principales: | Jin, Bo, Fu, Chunling, Jin, Yong, Yang, Wei, Li, Shengbin, Zhang, Guangyao, Wang, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197094/ https://www.ncbi.nlm.nih.gov/pubmed/34071066 http://dx.doi.org/10.3390/s21113627 |
Ejemplares similares
-
An Adaptive Homeostatic Algorithm for the Unsupervised Learning of Visual Features
por: Perrinet, Laurent U.
Publicado: (2019) -
An Adapting Chemotaxis Bacterial Foraging Optimization Algorithm for Feature Selection in Classification
por: Wang, Hong, et al.
Publicado: (2020) -
The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis
por: Xie, Juanying, et al.
Publicado: (2021) -
Group Based Unsupervised Feature Selection
por: Perera, Kushani, et al.
Publicado: (2020) -
Utility metric for unsupervised feature selection
por: Villa, Amalia, et al.
Publicado: (2021)