Cargando…
Radiomic Based Machine Learning Performance for a Three Class Problem in Neuro-Oncology: Time to Test the Waters?
SIMPLE SUMMARY: Prior radiomic studies have addressed a two-class tumor classification problem (glioblastoma (GBM) versus primary CNS lymphoma (PCNSL) or GBM versus metastasis). However, this approach is prone to bias and excludes other common brain tumor types. We addressed a real-life clinical pro...
Autores principales: | Priya, Sarv, Liu, Yanan, Ward, Caitlin, Le, Nam H., Soni, Neetu, Pillenahalli Maheshwarappa, Ravishankar, Monga, Varun, Zhang, Honghai, Sonka, Milan, Bathla, Girish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197204/ https://www.ncbi.nlm.nih.gov/pubmed/34073840 http://dx.doi.org/10.3390/cancers13112568 |
Ejemplares similares
-
Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics
por: Priya, Sarv, et al.
Publicado: (2021) -
Multimodality imaging in a case of multiple pulmonary hyalinizing granulomas - A decade follow-up
por: Soni, Neetu, et al.
Publicado: (2021) -
Radiomics side experiments and DAFIT approach in identifying pulmonary hypertension using Cardiac MRI derived radiomics based machine learning models
por: Priya, Sarv, et al.
Publicado: (2021) -
Radiomics Detection of Pulmonary Hypertension via Texture-Based Assessments of Cardiac MRI: A Machine-Learning Model Comparison—Cardiac MRI Radiomics in Pulmonary Hypertension
por: Priya, Sarv, et al.
Publicado: (2021) -
Chronic Venous Insufficiency Causing a Diagnostic Conundrum on Tc-99m Bone Scan Done for Osteosarcoma Surveillance: Awareness is the Key!
por: Maheshwarappa, Ravishankar Pillenahalli, et al.
Publicado: (2019)