Cargando…

Effect of Third-Stage Heat Treatments on Microstructure and Properties of Dual-Phase Titanium Alloy

Two-phase TC21 titanium alloy samples were solution-treated at 990 °C (β phase zone) and cooled by furnace cooling (FC), air cooling (AC), and water quenching (WQ), respectively. The second solution stage treatment was carried out at 900 °C (α + β phase zone), then aging treatment was performed at 5...

Descripción completa

Detalles Bibliográficos
Autores principales: Mao, Xiqin, Ou, Meigui, Chen, Desong, Yang, Ming, Long, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197205/
https://www.ncbi.nlm.nih.gov/pubmed/34073763
http://dx.doi.org/10.3390/ma14112776
Descripción
Sumario:Two-phase TC21 titanium alloy samples were solution-treated at 990 °C (β phase zone) and cooled by furnace cooling (FC), air cooling (AC), and water quenching (WQ), respectively. The second solution stage treatment was carried out at 900 °C (α + β phase zone), then aging treatment was performed at 590 °C. The influence of the size and quantity of the α phase on the properties of the sample were studied. The experimental results showed as the cooling rate increased after the first solution stage treatment, wherein the thickness of primary layer α gradually decreased, and the tensile strength and yield strength gradually increased. After the second solution stage treatment, the tensile properties of samples increased due to the quantity of layers α increased. The aging treatment promoted the precipitation of the dispersed α phase and further improved the tensile strength. After the third solution stage treatments, the FC samples with more β-phase had the best comprehensive mechanical properties.