Cargando…
Effect of Third-Stage Heat Treatments on Microstructure and Properties of Dual-Phase Titanium Alloy
Two-phase TC21 titanium alloy samples were solution-treated at 990 °C (β phase zone) and cooled by furnace cooling (FC), air cooling (AC), and water quenching (WQ), respectively. The second solution stage treatment was carried out at 900 °C (α + β phase zone), then aging treatment was performed at 5...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197205/ https://www.ncbi.nlm.nih.gov/pubmed/34073763 http://dx.doi.org/10.3390/ma14112776 |
Sumario: | Two-phase TC21 titanium alloy samples were solution-treated at 990 °C (β phase zone) and cooled by furnace cooling (FC), air cooling (AC), and water quenching (WQ), respectively. The second solution stage treatment was carried out at 900 °C (α + β phase zone), then aging treatment was performed at 590 °C. The influence of the size and quantity of the α phase on the properties of the sample were studied. The experimental results showed as the cooling rate increased after the first solution stage treatment, wherein the thickness of primary layer α gradually decreased, and the tensile strength and yield strength gradually increased. After the second solution stage treatment, the tensile properties of samples increased due to the quantity of layers α increased. The aging treatment promoted the precipitation of the dispersed α phase and further improved the tensile strength. After the third solution stage treatments, the FC samples with more β-phase had the best comprehensive mechanical properties. |
---|