Cargando…

Discrimination and Quantitation of Biologically Relevant Carboxylate Anions Using A [Dye•PAMAM] Complex

Carboxylate anions are analytical targets with environmental and biological relevance, whose detection is often challenging in aqueous solutions. We describe a method for discrimination and quantitation of carboxylates in water buffered to pH 7.4 based on their differential interaction with a supram...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Yifei, Bonizzoni, Marco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197244/
https://www.ncbi.nlm.nih.gov/pubmed/34073712
http://dx.doi.org/10.3390/s21113637
Descripción
Sumario:Carboxylate anions are analytical targets with environmental and biological relevance, whose detection is often challenging in aqueous solutions. We describe a method for discrimination and quantitation of carboxylates in water buffered to pH 7.4 based on their differential interaction with a supramolecular fluorescent sensor, self-assembled from readily available building blocks. A fifth-generation poly(amidoamine) dendrimer (PAMAM G5), bound to organic fluorophores (calcein or pyranine) through noncovalent interactions, forms a [dye•PAMAM] complex responsive to interaction with carboxylates. The observed changes in absorbance, and in fluorescence emission and anisotropy, were interpreted through linear discriminant analysis (LDA) and principal component analysis (PCA) to differentiate 10 structurally similar carboxylates with a limit of discrimination around 100 μM. The relationship between the analytes’ chemical structures and the system’s response was also elucidated. This insight allowed us to extend the system’s capabilities to the simultaneous identification of the nature and concentration of unknown analytes, with excellent structural identification results and good concentration recovery, an uncommon feat for a pattern-based sensing system.