Cargando…
DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence
Predicting in vivo protein–DNA binding sites is a challenging but pressing task in a variety of fields like drug design and development. Most promoters contain a number of transcription factor (TF) binding sites, but only a small minority has been identified by biochemical experiments that are time-...
Autores principales: | Deng, Lei, Wu, Hui, Liu, Xuejun, Liu, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197256/ https://www.ncbi.nlm.nih.gov/pubmed/34073774 http://dx.doi.org/10.3390/ijms22115521 |
Ejemplares similares
-
Prediction of Transcription Factor Binding Sites Using a Combined Deep Learning Approach
por: Cao, Linan, et al.
Publicado: (2022) -
DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins
por: Fu, Hongli, et al.
Publicado: (2019) -
DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method
por: Hendrix, Samuel Godfrey, et al.
Publicado: (2021) -
Deep Sequencing of MYC DNA-Binding Sites in Burkitt Lymphoma
por: Seitz, Volkhard, et al.
Publicado: (2011) -
Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure
por: Deng, Lei, et al.
Publicado: (2020)