Cargando…
Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick
Wastewater treatment activities in the chemical industry have generated abundant gypsum waste, classified as scheduled waste (SW205) under the Environmental Quality Regulations 2005. The waste needs to be disposed into a secure landfill due to the high heavy metals content which is becoming a threat...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197306/ https://www.ncbi.nlm.nih.gov/pubmed/34074057 http://dx.doi.org/10.3390/ma14112800 |
_version_ | 1783706888993505280 |
---|---|
author | Hamid, Nur Jannah Abdul Kadir, Aeslina Abdul Hashar, Nurul Nabila Huda Pietrusiewicz, Paweł Nabiałek, Marcin Wnuk, Izabela Gucwa, Marcek Palutkiewicz, Paweł Hashim, Azini Amiza Sarani, Noor Amira Nio, Amos Anak Noor, Norazian Mohamed Jez, Bartłomiej |
author_facet | Hamid, Nur Jannah Abdul Kadir, Aeslina Abdul Hashar, Nurul Nabila Huda Pietrusiewicz, Paweł Nabiałek, Marcin Wnuk, Izabela Gucwa, Marcek Palutkiewicz, Paweł Hashim, Azini Amiza Sarani, Noor Amira Nio, Amos Anak Noor, Norazian Mohamed Jez, Bartłomiej |
author_sort | Hamid, Nur Jannah Abdul |
collection | PubMed |
description | Wastewater treatment activities in the chemical industry have generated abundant gypsum waste, classified as scheduled waste (SW205) under the Environmental Quality Regulations 2005. The waste needs to be disposed into a secure landfill due to the high heavy metals content which is becoming a threat to the environment. Hence, an alternative disposal method was evaluated by recycling the waste into fired clay brick. The brick samples were incorporated with different percentages of gypsum waste (0% as control, 10, 20, 30, 40 and 50%) and were fired at 1050 °C using 1 °C per minute heating rate. Shrinkage, dry density, initial rate of suction (IRS) and compressive strength tests were conducted to determine the physical and mechanical properties of the brick, while the synthetic precipitation leaching procedure (SPLP) was performed to scrutinize the leachability of heavy metals from the crushed brick samples. The results showed that the properties would decrease through the incorporation of gypsum waste and indicated the best result at 10% of waste utilization with 47.5% of shrinkage, 1.37% of dry density, 22.87% of IRS and 28.3% of compressive strength. In addition, the leachability test highlighted that the concentrations of Fe and Al was significantly reduced up to 100% from 4884 to 3.13 ppm (Fe) and from 16,134 to 0.81 ppm (Al), respectively. The heavy metals content in the bricks were oxidized during the firing process, which signified the successful remediation of heavy metals in the samples. Based on the permissible incorporation of gypsum waste into fired clay brick, this study promised a more green disposing method for gypsum waste, and insight as a potential towards achieving a sustainable end product. |
format | Online Article Text |
id | pubmed-8197306 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81973062021-06-13 Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick Hamid, Nur Jannah Abdul Kadir, Aeslina Abdul Hashar, Nurul Nabila Huda Pietrusiewicz, Paweł Nabiałek, Marcin Wnuk, Izabela Gucwa, Marcek Palutkiewicz, Paweł Hashim, Azini Amiza Sarani, Noor Amira Nio, Amos Anak Noor, Norazian Mohamed Jez, Bartłomiej Materials (Basel) Article Wastewater treatment activities in the chemical industry have generated abundant gypsum waste, classified as scheduled waste (SW205) under the Environmental Quality Regulations 2005. The waste needs to be disposed into a secure landfill due to the high heavy metals content which is becoming a threat to the environment. Hence, an alternative disposal method was evaluated by recycling the waste into fired clay brick. The brick samples were incorporated with different percentages of gypsum waste (0% as control, 10, 20, 30, 40 and 50%) and were fired at 1050 °C using 1 °C per minute heating rate. Shrinkage, dry density, initial rate of suction (IRS) and compressive strength tests were conducted to determine the physical and mechanical properties of the brick, while the synthetic precipitation leaching procedure (SPLP) was performed to scrutinize the leachability of heavy metals from the crushed brick samples. The results showed that the properties would decrease through the incorporation of gypsum waste and indicated the best result at 10% of waste utilization with 47.5% of shrinkage, 1.37% of dry density, 22.87% of IRS and 28.3% of compressive strength. In addition, the leachability test highlighted that the concentrations of Fe and Al was significantly reduced up to 100% from 4884 to 3.13 ppm (Fe) and from 16,134 to 0.81 ppm (Al), respectively. The heavy metals content in the bricks were oxidized during the firing process, which signified the successful remediation of heavy metals in the samples. Based on the permissible incorporation of gypsum waste into fired clay brick, this study promised a more green disposing method for gypsum waste, and insight as a potential towards achieving a sustainable end product. MDPI 2021-05-24 /pmc/articles/PMC8197306/ /pubmed/34074057 http://dx.doi.org/10.3390/ma14112800 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hamid, Nur Jannah Abdul Kadir, Aeslina Abdul Hashar, Nurul Nabila Huda Pietrusiewicz, Paweł Nabiałek, Marcin Wnuk, Izabela Gucwa, Marcek Palutkiewicz, Paweł Hashim, Azini Amiza Sarani, Noor Amira Nio, Amos Anak Noor, Norazian Mohamed Jez, Bartłomiej Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick |
title | Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick |
title_full | Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick |
title_fullStr | Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick |
title_full_unstemmed | Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick |
title_short | Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick |
title_sort | influence of gypsum waste utilization on properties and leachability of fired clay brick |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197306/ https://www.ncbi.nlm.nih.gov/pubmed/34074057 http://dx.doi.org/10.3390/ma14112800 |
work_keys_str_mv | AT hamidnurjannahabdul influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick AT kadiraeslinaabdul influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick AT hasharnurulnabilahuda influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick AT pietrusiewiczpaweł influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick AT nabiałekmarcin influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick AT wnukizabela influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick AT gucwamarcek influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick AT palutkiewiczpaweł influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick AT hashimaziniamiza influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick AT saraninooramira influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick AT nioamosanak influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick AT noornorazianmohamed influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick AT jezbartłomiej influenceofgypsumwasteutilizationonpropertiesandleachabilityoffiredclaybrick |