Cargando…
Prediction of Flight Status of Logistics UAVs Based on an Information Entropy Radial Basis Function Neural Network
Aiming at addressing the problems of short battery life, low payload and unmeasured load ratio of logistics Unmanned Aerial Vehicles (UAVs), the Radial Basis Function (RBF) neural network was trained with the flight data of logistics UAV from the Internet of Things to predict the flight status of lo...
Autores principales: | Yang, Qin, Ye, Zhaofa, Li, Xuzheng, Wei, Daozhu, Chen, Shunhua, Li, Zhirui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197341/ https://www.ncbi.nlm.nih.gov/pubmed/34073923 http://dx.doi.org/10.3390/s21113651 |
Ejemplares similares
-
Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing
por: Park, Chulwoo, et al.
Publicado: (2015) -
Analysis of Human Information Recognition Model in Sports Based on Radial Basis Fuzzy Neural Network
por: Li, Tong, et al.
Publicado: (2022) -
Neural basis of forward flight control and landing in honeybees
por: Ibbotson, M. R., et al.
Publicado: (2017) -
Smart autonomous aircraft: flight control and planning for UAV
por: Bestaoui Sebbane, Yasmina
Publicado: (2015) -
UAV Flight and Landing Guidance System for Emergency Situations †
por: Lee, Joon Yeop, et al.
Publicado: (2019)