Cargando…

Genes Associated with Foliar Resistance to Septoria Nodorum Blotch of Hexaploid Wheat (Triticum aestivum L.)

The genetic control of host response to the fungal necrotrophic disease Septoria nodorum blotch (SNB) in bread wheat is complex, involving many minor genes. Quantitative trait loci (QTL) controlling SNB response were previously identified on chromosomes 1BS and 5BL. The aim of this study, therefore,...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Dora, Walker, Esther, Francki, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197541/
https://www.ncbi.nlm.nih.gov/pubmed/34070394
http://dx.doi.org/10.3390/ijms22115580
Descripción
Sumario:The genetic control of host response to the fungal necrotrophic disease Septoria nodorum blotch (SNB) in bread wheat is complex, involving many minor genes. Quantitative trait loci (QTL) controlling SNB response were previously identified on chromosomes 1BS and 5BL. The aim of this study, therefore, was to align and compare the genetic map representing QTL interval on 1BS and 5BS with the reference sequence of wheat and identify resistance genes (R-genes) associated with SNB response. Alignment of QTL intervals identified significant genome rearrangements on 1BS between parents of the DH population EGA Blanco, Millewa and the reference sequence of Chinese Spring with subtle rearrangements on 5BL. Nevertheless, annotation of genomic intervals in the reference sequence were able to identify and map 13 and 12 R-genes on 1BS and 5BL, respectively. R-genes discriminated co-located QTL on 1BS into two distinct but linked loci. NRC1a and TFIID mapped in one QTL on 1BS whereas RGA and Snn1 mapped in the linked locus and all were associated with SNB resistance but in one environment only. Similarly, Tsn1 and WK35 were mapped in one QTL on 5BL with NETWORKED 1A and RGA genes mapped in the linked QTL interval. This study provided new insights on possible biochemical, cellular and molecular mechanisms responding to SNB infection in different environments and also addressed limitations of using the reference sequence to identify the full complement of functional R-genes in modern varieties.