Cargando…
Design and system evaluation of a dual-panel portable PET (DP-PET)
BACKGROUND: Integrated whole-body PET/MR technology continues to mature and is now extensively used in clinical settings. However, due to the special design architecture, integrated whole-body PET/MR comes with a few inherent limitations. Firstly, whole-body PET/MR lacks sensitivity and resolution f...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197684/ https://www.ncbi.nlm.nih.gov/pubmed/34117943 http://dx.doi.org/10.1186/s40658-021-00392-5 |
Sumario: | BACKGROUND: Integrated whole-body PET/MR technology continues to mature and is now extensively used in clinical settings. However, due to the special design architecture, integrated whole-body PET/MR comes with a few inherent limitations. Firstly, whole-body PET/MR lacks sensitivity and resolution for focused organs. Secondly, broader clinical access of integrated PET/MR has been significantly restricted due to its prohibitively high cost. The MR-compatible PET insert is an independent and removable PET scanner which can be placed within an MRI bore. However, the mobility and configurability of all existing MR-compatible PET insert prototypes remain limited. METHODS: An MR-compatible portable PET insert prototype, dual-panel portable PET (DP-PET), has been developed for simultaneous PET/MR imaging. Using SiPM, digital readout electronics, novel carbon fiber shielding, phase-change cooling, and MRI compatible battery power, DP-PET was designed to achieve high-sensitivity and high-resolution with compatibility with a clinical 3-T MRI scanner. A GPU-based reconstruction method with resolution modeling (RM) has been developed for the DP-PET reconstruction. We evaluated the system performance on PET resolution, sensitivity, image quality, and the PET/MR interference. RESULTS: The initial results reveal that the DP-PET prototype worked as expected in the MRI bore and caused minimal compromise to the MRI image quality. The PET performance was measured to show a spatial resolution ≤ 2.5 mm (parallel to the detector panels), maximum sensitivity = 3.6% at the center of FOV, and energy resolution = 12.43%. MR pulsing introduces less than 2% variation to the PET performance measurement results. CONCLUSIONS: We developed a MR-compatible PET insert prototype and performed several studies to begin to characterize the performance of the proposed DP-PET. The results showed that the proposed DP-PET performed well in the MRI bore and would cause little influence on the MRI images. The Derenzo phantom test showed that the proposed reconstruction method could obtain high-quality images using DP-PET. |
---|