Cargando…
Neural Stochastic Differential Equations with Neural Processes Family Members for Uncertainty Estimation in Deep Learning
Existing neural stochastic differential equation models, such as SDE-Net, can quantify the uncertainties of deep neural networks (DNNs) from a dynamical system perspective. SDE-Net is either dominated by its drift net with in-distribution (ID) data to achieve good predictive accuracy, or dominated b...
Autores principales: | Wang, Yongguang, Yao, Shuzhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197858/ https://www.ncbi.nlm.nih.gov/pubmed/34073566 http://dx.doi.org/10.3390/s21113708 |
Ejemplares similares
-
Parameter estimation in stochastic differential equations
por: Bishwal, Jaya P N
Publicado: (2008) -
Stochastic differential equations and diffusion processes
por: Ikeda, N, et al.
Publicado: (1989) -
Stochastic differential equations and diffusion processes
por: Watanabe, S, et al.
Publicado: (1981) -
Stochastic neural field equations: a rigorous footing
por: Faugeras, O., et al.
Publicado: (2014) -
DeepVelo: Single-cell transcriptomic deep velocity field learning with neural ordinary differential equations
por: Chen, Zhanlin, et al.
Publicado: (2022)