Cargando…
Accuracy of Machine Learning Algorithms for the Classification of Molecular Features of Gliomas on MRI: A Systematic Literature Review and Meta-Analysis
SIMPLE SUMMARY: Glioma prognosis and treatment are based on histopathological characteristics and molecular profile. Following the World Health Organization (WHO) guidelines (2016), the most important molecular diagnostic markers include IDH1/2-genotype and 1p/19q codeletion status, although more re...
Autores principales: | van Kempen, Evi J., Post, Max, Mannil, Manoj, Kusters, Benno, ter Laan, Mark, Meijer, Frederick J. A., Henssen, Dylan J. H. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198025/ https://www.ncbi.nlm.nih.gov/pubmed/34073309 http://dx.doi.org/10.3390/cancers13112606 |
Ejemplares similares
-
Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis
por: van Kempen, Evi J., et al.
Publicado: (2021) -
Apparent Diffusion Coefficient Metrics to Differentiate between Treatment-Related Abnormalities and Tumor Progression in Post-Treatment Glioblastoma Patients: A Retrospective Study
por: van den Elshout, Rik, et al.
Publicado: (2023) -
Head-To-Head Comparison of PET and Perfusion Weighted MRI Techniques to Distinguish Treatment Related Abnormalities from Tumor Progression in Glioma
por: Henssen, Dylan, et al.
Publicado: (2023) -
Reliability of dynamic susceptibility contrast perfusion metrics in pre- and post-treatment glioma
por: Kouwenberg, Valentina, et al.
Publicado: (2022) -
A systematic review and meta-analysis on the differentiation of glioma grade and mutational status by use of perfusion-based magnetic resonance imaging
por: van Santwijk, Lusien, et al.
Publicado: (2022)