Cargando…
Development of a Highly Sensitive β-Glucan Detection System Using Scanning Single-Molecule Counting Method
To overcome the limitations of the Limulus amebocyte lysate (LAL) assay method for the diagnosis of invasive fungal infection, we applied a reaction system combining recombinant β-glucan binding proteins and a scanning single-molecule counting (SSMC) method. A novel (1→3)-β-D-glucan recognition prot...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198189/ https://www.ncbi.nlm.nih.gov/pubmed/34205910 http://dx.doi.org/10.3390/ijms22115977 |
Sumario: | To overcome the limitations of the Limulus amebocyte lysate (LAL) assay method for the diagnosis of invasive fungal infection, we applied a reaction system combining recombinant β-glucan binding proteins and a scanning single-molecule counting (SSMC) method. A novel (1→3)-β-D-glucan recognition protein (S-BGRP) and a (1→6)-β-glucanase mutant protein were prepared and tested for the binding of (1→6)-branched (1→3)-β-D-glucan from fungi. S-BGRP and (1→6)-β-glucanase mutant proteins reacted with β-glucan from Candida and Aspergillus spp. Although LAL cross-reacted with plant-derived β-glucans, the new detection system using the SSMC method showed low sensitivity to plant (1→3)-β-D-glucan, which significantly improved the appearance of false positives, a recognized problem with the LAL method. Measurement of β-glucan levels by the SSMC method using recombinant β-glucan-binding proteins may be useful for the diagnosis of fungal infections. This study shows that this detection system could be a new alternative diagnostic method to the LAL method. |
---|