Cargando…
New Acridone- and (Thio)Xanthone-Derived 1,1-Donor–Acceptor-Substituted Alkenes: pH-Dependent Fluorescence and Unusual Photooxygenation Properties
A synthetic route to new heterocyclic 1,1-donor–acceptor-substituted alkenes starting with N-methyl-acridone, xanthone, and thioxanthone was investigated, leading to the acridone- and xanthone-derived products methyl 2-methoxy-2-(10-methylacridin-9 (10H)-ylidene)acetate (7) and methyl 2-methoxy-2-(9...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198218/ https://www.ncbi.nlm.nih.gov/pubmed/34072791 http://dx.doi.org/10.3390/molecules26113305 |
_version_ | 1783707085443170304 |
---|---|
author | Lippold, Tim Neudörfl, Jörg M. Griesbeck, Axel |
author_facet | Lippold, Tim Neudörfl, Jörg M. Griesbeck, Axel |
author_sort | Lippold, Tim |
collection | PubMed |
description | A synthetic route to new heterocyclic 1,1-donor–acceptor-substituted alkenes starting with N-methyl-acridone, xanthone, and thioxanthone was investigated, leading to the acridone- and xanthone-derived products methyl 2-methoxy-2-(10-methylacridin-9 (10H)-ylidene)acetate (7) and methyl 2-methoxy-2-(9H-xanthen-9-ylidene)acetate (10) in low yields with the de-methoxylated product methyl 2-(10-methylacridin-9 (10H)-ylidene)acetate (8) and the reduced compound methyl 2-methoxy-2-(9H-xanthen-9-yl)acetate (11) as the major products from N-methyl acridone and xanthone. From thioxanthone, only the rearrangement and reduction products (14) and (15) resulted. The photophysical properties of compounds (7), (8), and (10) were investigated in the presence and absence of the Brønsted acid TFA by NMR, UV–VIS absorption, and fluorescence spectroscopy. Protonation of the acridone-derived alkenes (7) and (8) led to strong bathochromic and hyperchromic fluorescence shifts and a substantial increase in Stokes shift. The photooxygenation experiments with these substrates showed an unusual reactivity pattern in the singlet oxygen processes: whereas the electron-rich enolether (7) was chemically unreactive, (8) and (10) were oxidatively cleaved, presumably via intermediate 1,2-dioxetanes. |
format | Online Article Text |
id | pubmed-8198218 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81982182021-06-14 New Acridone- and (Thio)Xanthone-Derived 1,1-Donor–Acceptor-Substituted Alkenes: pH-Dependent Fluorescence and Unusual Photooxygenation Properties Lippold, Tim Neudörfl, Jörg M. Griesbeck, Axel Molecules Communication A synthetic route to new heterocyclic 1,1-donor–acceptor-substituted alkenes starting with N-methyl-acridone, xanthone, and thioxanthone was investigated, leading to the acridone- and xanthone-derived products methyl 2-methoxy-2-(10-methylacridin-9 (10H)-ylidene)acetate (7) and methyl 2-methoxy-2-(9H-xanthen-9-ylidene)acetate (10) in low yields with the de-methoxylated product methyl 2-(10-methylacridin-9 (10H)-ylidene)acetate (8) and the reduced compound methyl 2-methoxy-2-(9H-xanthen-9-yl)acetate (11) as the major products from N-methyl acridone and xanthone. From thioxanthone, only the rearrangement and reduction products (14) and (15) resulted. The photophysical properties of compounds (7), (8), and (10) were investigated in the presence and absence of the Brønsted acid TFA by NMR, UV–VIS absorption, and fluorescence spectroscopy. Protonation of the acridone-derived alkenes (7) and (8) led to strong bathochromic and hyperchromic fluorescence shifts and a substantial increase in Stokes shift. The photooxygenation experiments with these substrates showed an unusual reactivity pattern in the singlet oxygen processes: whereas the electron-rich enolether (7) was chemically unreactive, (8) and (10) were oxidatively cleaved, presumably via intermediate 1,2-dioxetanes. MDPI 2021-05-31 /pmc/articles/PMC8198218/ /pubmed/34072791 http://dx.doi.org/10.3390/molecules26113305 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Lippold, Tim Neudörfl, Jörg M. Griesbeck, Axel New Acridone- and (Thio)Xanthone-Derived 1,1-Donor–Acceptor-Substituted Alkenes: pH-Dependent Fluorescence and Unusual Photooxygenation Properties |
title | New Acridone- and (Thio)Xanthone-Derived 1,1-Donor–Acceptor-Substituted Alkenes: pH-Dependent Fluorescence and Unusual Photooxygenation Properties |
title_full | New Acridone- and (Thio)Xanthone-Derived 1,1-Donor–Acceptor-Substituted Alkenes: pH-Dependent Fluorescence and Unusual Photooxygenation Properties |
title_fullStr | New Acridone- and (Thio)Xanthone-Derived 1,1-Donor–Acceptor-Substituted Alkenes: pH-Dependent Fluorescence and Unusual Photooxygenation Properties |
title_full_unstemmed | New Acridone- and (Thio)Xanthone-Derived 1,1-Donor–Acceptor-Substituted Alkenes: pH-Dependent Fluorescence and Unusual Photooxygenation Properties |
title_short | New Acridone- and (Thio)Xanthone-Derived 1,1-Donor–Acceptor-Substituted Alkenes: pH-Dependent Fluorescence and Unusual Photooxygenation Properties |
title_sort | new acridone- and (thio)xanthone-derived 1,1-donor–acceptor-substituted alkenes: ph-dependent fluorescence and unusual photooxygenation properties |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198218/ https://www.ncbi.nlm.nih.gov/pubmed/34072791 http://dx.doi.org/10.3390/molecules26113305 |
work_keys_str_mv | AT lippoldtim newacridoneandthioxanthonederived11donoracceptorsubstitutedalkenesphdependentfluorescenceandunusualphotooxygenationproperties AT neudorfljorgm newacridoneandthioxanthonederived11donoracceptorsubstitutedalkenesphdependentfluorescenceandunusualphotooxygenationproperties AT griesbeckaxel newacridoneandthioxanthonederived11donoracceptorsubstitutedalkenesphdependentfluorescenceandunusualphotooxygenationproperties |