Cargando…
Effect of Glycerol on an N-Vinylpyrrolidone-Based Photopolymer for Transmission Holography
N-vinylpyrrolidone (NVP) has a large molecular structure, so it is difficult to diffuse during holographic recording, especially at low spatial frequencies. We used glycerol to promote the diffusion of NVP, and successfully improved the holographic performance of the photopolymer at low spatial freq...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198246/ https://www.ncbi.nlm.nih.gov/pubmed/34072031 http://dx.doi.org/10.3390/polym13111754 |
Sumario: | N-vinylpyrrolidone (NVP) has a large molecular structure, so it is difficult to diffuse during holographic recording, especially at low spatial frequencies. We used glycerol to promote the diffusion of NVP, and successfully improved the holographic performance of the photopolymer at low spatial frequencies. As the concentration of glycerol increases, the holographic performance first increases and then remains stable. The optimal concentration of glycerol is 0.21 mol/L. At this concentration, the maximum diffraction efficiency of the photopolymer is 84%, the refractive index modulation is 1.95 × 10(−3), and the photosensitive sensitivity is 7.91 × 10(−4) cm(2)/mJ. Compared with the control group, the maximum diffraction efficiency, maximum refractive index modulation and photosensitivity at low spatial frequencies (800 lp/mm) have increased by 11.19 times, 4.69 times and 1.71 times, respectively. Using the optimized photopolymer for transmission holographic recording and reproduction, we have obtained a clear and bright transmission hologram. The photopolymer modified with glycerol is expected to be applied to the fields of holography, diffractive optics, and so on. |
---|