Cargando…
Feature Extraction Using Sparse Kernel Non-Negative Matrix Factorization for Rolling Element Bearing Diagnosis
For early fault detection of a bearing, the localized defect generally brings a complex vibration signal, so it is difficult to detect the periodic transient characteristics from the signal spectrum using conventional bearing fault diagnosis methods. Therefore, many matrix analysis technologies, suc...
Autores principales: | Liang, Lin, Ding, Xingyun, Liu, Fei, Chen, Yuanming, Wen, Haobin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198267/ https://www.ncbi.nlm.nih.gov/pubmed/34070578 http://dx.doi.org/10.3390/s21113680 |
Ejemplares similares
-
Weighted Kernel Entropy Component Analysis for Fault Diagnosis of Rolling Bearings
por: Zhou, Hongdi, et al.
Publicado: (2017) -
Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis
por: Song, Xinmin, et al.
Publicado: (2023) -
Multiband Envelope Spectra Extraction for Fault Diagnosis of Rolling Element Bearings
por: Duan, Jie, et al.
Publicado: (2018) -
Simultaneously Low Rank and Group Sparse Decomposition for Rolling Bearing Fault Diagnosis
por: Zheng, Kai, et al.
Publicado: (2020) -
Rolling Bearing Fault Monitoring for Sparse Time-Frequency Representation and Feature Detection Strategy
por: Tang, Jiahui, et al.
Publicado: (2022)