Cargando…
Protein Sumoylation Is Crucial for Phagocytosis in Entamoeba histolytica Trophozoites
Posttranslational modifications provide Entamoeba histolytica proteins the timing and signaling to intervene during different processes, such as phagocytosis. However, SUMOylation has not been studied in E. histolytica yet. Here, we characterized the E. histolytica SUMO gene, its product (EhSUMO), a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198320/ https://www.ncbi.nlm.nih.gov/pubmed/34071922 http://dx.doi.org/10.3390/ijms22115709 |
_version_ | 1783707110039617536 |
---|---|
author | Díaz-Hernández, Mitzi Javier-Reyna, Rosario Sotto-Ortega, Izaid García-Rivera, Guillermina Montaño, Sarita Betanzos, Abigail Zanatta, Dxinegueela Orozco, Esther |
author_facet | Díaz-Hernández, Mitzi Javier-Reyna, Rosario Sotto-Ortega, Izaid García-Rivera, Guillermina Montaño, Sarita Betanzos, Abigail Zanatta, Dxinegueela Orozco, Esther |
author_sort | Díaz-Hernández, Mitzi |
collection | PubMed |
description | Posttranslational modifications provide Entamoeba histolytica proteins the timing and signaling to intervene during different processes, such as phagocytosis. However, SUMOylation has not been studied in E. histolytica yet. Here, we characterized the E. histolytica SUMO gene, its product (EhSUMO), and the relevance of SUMOylation in phagocytosis. Our results indicated that EhSUMO has an extended N-terminus that differentiates SUMO from ubiquitin. It also presents the GG residues at the C-terminus and the ΨKXE/D binding motif, both involved in target protein contact. Additionally, the E. histolytica genome possesses the enzymes belonging to the SUMOylation-deSUMOylation machinery. Confocal microscopy assays disclosed a remarkable EhSUMO membrane activity with convoluted and changing structures in trophozoites during erythrophagocytosis. SUMOylated proteins appeared in pseudopodia, phagocytic channels, and around the adhered and ingested erythrocytes. Docking analysis predicted interaction of EhSUMO with EhADH (an ALIX family protein), and immunoprecipitation and immunofluorescence assays revealed that the association increased during phagocytosis; whereas the EhVps32 (a protein of the ESCRT-III complex)-EhSUMO interaction appeared stronger since basal conditions. In EhSUMO knocked-down trophozoites, the bizarre membranous structures disappeared, and EhSUMO interaction with EhADH and EhVps32 diminished. Our results evidenced the presence of a SUMO gene in E. histolytica and the SUMOylation relevance during phagocytosis. This is supported by bioinformatics screening of many other proteins of E. histolytica involved in phagocytosis, which present putative SUMOylation sites and the ΨKXE/D binding motif. |
format | Online Article Text |
id | pubmed-8198320 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81983202021-06-14 Protein Sumoylation Is Crucial for Phagocytosis in Entamoeba histolytica Trophozoites Díaz-Hernández, Mitzi Javier-Reyna, Rosario Sotto-Ortega, Izaid García-Rivera, Guillermina Montaño, Sarita Betanzos, Abigail Zanatta, Dxinegueela Orozco, Esther Int J Mol Sci Article Posttranslational modifications provide Entamoeba histolytica proteins the timing and signaling to intervene during different processes, such as phagocytosis. However, SUMOylation has not been studied in E. histolytica yet. Here, we characterized the E. histolytica SUMO gene, its product (EhSUMO), and the relevance of SUMOylation in phagocytosis. Our results indicated that EhSUMO has an extended N-terminus that differentiates SUMO from ubiquitin. It also presents the GG residues at the C-terminus and the ΨKXE/D binding motif, both involved in target protein contact. Additionally, the E. histolytica genome possesses the enzymes belonging to the SUMOylation-deSUMOylation machinery. Confocal microscopy assays disclosed a remarkable EhSUMO membrane activity with convoluted and changing structures in trophozoites during erythrophagocytosis. SUMOylated proteins appeared in pseudopodia, phagocytic channels, and around the adhered and ingested erythrocytes. Docking analysis predicted interaction of EhSUMO with EhADH (an ALIX family protein), and immunoprecipitation and immunofluorescence assays revealed that the association increased during phagocytosis; whereas the EhVps32 (a protein of the ESCRT-III complex)-EhSUMO interaction appeared stronger since basal conditions. In EhSUMO knocked-down trophozoites, the bizarre membranous structures disappeared, and EhSUMO interaction with EhADH and EhVps32 diminished. Our results evidenced the presence of a SUMO gene in E. histolytica and the SUMOylation relevance during phagocytosis. This is supported by bioinformatics screening of many other proteins of E. histolytica involved in phagocytosis, which present putative SUMOylation sites and the ΨKXE/D binding motif. MDPI 2021-05-27 /pmc/articles/PMC8198320/ /pubmed/34071922 http://dx.doi.org/10.3390/ijms22115709 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Díaz-Hernández, Mitzi Javier-Reyna, Rosario Sotto-Ortega, Izaid García-Rivera, Guillermina Montaño, Sarita Betanzos, Abigail Zanatta, Dxinegueela Orozco, Esther Protein Sumoylation Is Crucial for Phagocytosis in Entamoeba histolytica Trophozoites |
title | Protein Sumoylation Is Crucial for Phagocytosis in Entamoeba histolytica Trophozoites |
title_full | Protein Sumoylation Is Crucial for Phagocytosis in Entamoeba histolytica Trophozoites |
title_fullStr | Protein Sumoylation Is Crucial for Phagocytosis in Entamoeba histolytica Trophozoites |
title_full_unstemmed | Protein Sumoylation Is Crucial for Phagocytosis in Entamoeba histolytica Trophozoites |
title_short | Protein Sumoylation Is Crucial for Phagocytosis in Entamoeba histolytica Trophozoites |
title_sort | protein sumoylation is crucial for phagocytosis in entamoeba histolytica trophozoites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198320/ https://www.ncbi.nlm.nih.gov/pubmed/34071922 http://dx.doi.org/10.3390/ijms22115709 |
work_keys_str_mv | AT diazhernandezmitzi proteinsumoylationiscrucialforphagocytosisinentamoebahistolyticatrophozoites AT javierreynarosario proteinsumoylationiscrucialforphagocytosisinentamoebahistolyticatrophozoites AT sottoortegaizaid proteinsumoylationiscrucialforphagocytosisinentamoebahistolyticatrophozoites AT garciariveraguillermina proteinsumoylationiscrucialforphagocytosisinentamoebahistolyticatrophozoites AT montanosarita proteinsumoylationiscrucialforphagocytosisinentamoebahistolyticatrophozoites AT betanzosabigail proteinsumoylationiscrucialforphagocytosisinentamoebahistolyticatrophozoites AT zanattadxinegueela proteinsumoylationiscrucialforphagocytosisinentamoebahistolyticatrophozoites AT orozcoesther proteinsumoylationiscrucialforphagocytosisinentamoebahistolyticatrophozoites |