Cargando…
Preliminary Radiogenomic Evidence for the Prediction of Metastasis and Chemotherapy Response in Pediatric Patients with Osteosarcoma Using (18)F-FDG PET/CT, EZRIN, and KI67
SIMPLE SUMMARY: Pediatric osteosarcoma is one of the most aggressive cancers, and predictions of metastasis and chemotherapy response have a significant impact on pediatric patient survival. Radiogenomics, as methods of analyzing gene expression or image texture features, have previously been used f...
Autores principales: | Kim, Byung-Chul, Kim, Jingyu, Kim, Kangsan, Byun, Byung Hyun, Lim, Ilhan, Kong, Chang-Bae, Song, Won Seok, Koh, Jae-Soo, Woo, Sang-Keun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198322/ https://www.ncbi.nlm.nih.gov/pubmed/34071614 http://dx.doi.org/10.3390/cancers13112671 |
Ejemplares similares
-
Prediction of Neoadjuvant Chemotherapy Response in Osteosarcoma Using Convolutional Neural Network of Tumor Center (18)F-FDG PET Images
por: Kim, Jingyu, et al.
Publicado: (2021) -
Vitamin D Receptor, Retinoid X Receptor, Ki-67, Survivin, and Ezrin Expression in Canine Osteosarcoma
por: Davies, John, et al.
Publicado: (2012) -
Deep Learning-Based Delayed PET Image Synthesis from Corresponding Early Scanned PET for Dosimetry Uptake Estimation
por: Kim, Kangsan, et al.
Publicado: (2023) -
Early response monitoring of neoadjuvant chemotherapy using [(18)F]FDG PET can predict the clinical outcome of extremity osteosarcoma
por: Lee, Inki, et al.
Publicado: (2020) -
Prediction of Chemotherapy Response of Osteosarcoma Using Baseline (18)F-FDG Textural Features Machine Learning Approaches with PCA
por: Jeong, Su Young, et al.
Publicado: (2019)