Cargando…
Prediction of Head Movement in 360-Degree Videos Using Attention Model
In this paper, we propose a prediction algorithm, the combination of Long Short-Term Memory (LSTM) and attention model, based on machine learning models to predict the vision coordinates when watching 360-degree videos in a Virtual Reality (VR) or Augmented Reality (AR) system. Predicting the vision...
Autores principales: | Lee, Dongwon, Choi, Minji, Lee, Joohyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198419/ https://www.ncbi.nlm.nih.gov/pubmed/34070560 http://dx.doi.org/10.3390/s21113678 |
Ejemplares similares
-
Impacts of Cues on Learning and Attention in Immersive 360-Degree Video: An Eye-Tracking Study
por: Liu, Rui, et al.
Publicado: (2022) -
Spatiotemporal Characteristics of 360-Degree Basic Attention
por: Harada, Yuki, et al.
Publicado: (2019) -
The effect of task-irrelevant spatial contexts on 360-degree attention
por: Harada, Yuki, et al.
Publicado: (2020) -
Exploring the effects of habituation and scent in first-person 360-degree videos on consumption behavior
por: Li, Benjamin J., et al.
Publicado: (2023) -
Developing Virtual Reality Trauma Training Experiences Using 360-Degree Video: Tutorial
por: Patel, Devika, et al.
Publicado: (2020)