Cargando…
The Role of PGC1α in Alzheimer’s Disease and Therapeutic Interventions
The peroxisome proliferator-activated receptor co-activator-1α (PGC1α) belongs to a family of transcriptional regulators, which act as co-activators for a number of transcription factors, including PPARs, NRFs, oestrogen receptors, etc. PGC1α has been implicated in the control of mitochondrial bioge...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198456/ https://www.ncbi.nlm.nih.gov/pubmed/34071270 http://dx.doi.org/10.3390/ijms22115769 |
Sumario: | The peroxisome proliferator-activated receptor co-activator-1α (PGC1α) belongs to a family of transcriptional regulators, which act as co-activators for a number of transcription factors, including PPARs, NRFs, oestrogen receptors, etc. PGC1α has been implicated in the control of mitochondrial biogenesis, the regulation of the synthesis of ROS and inflammatory cytokines, as well as genes controlling metabolic processes. The levels of PGC1α have been shown to be altered in neurodegenerative disorders. In the brains of Alzheimer’s disease (AD) patients and animal models of amyloidosis, PGC1α expression was reduced compared with healthy individuals. Recently, it was shown that overexpression of PGC1α resulted in reduced amyloid-β (Aβ) generation, particularly by regulating the expression of BACE1, the rate-limiting enzyme involved in the production of Aβ. These results provide evidence pointing toward PGC1α activation as a new therapeutic avenue for AD, which has been supported by the promising observations of treatments with drugs that enhance the expression of PGC1α and gene therapy studies in animal models of AD. This review summarizes the different ways and mechanisms whereby PGC1α can be neuroprotective in AD and the pre-clinical treatments that have been explored so far. |
---|