Cargando…
Heating and Compression at Elevated Temperature of Thin-Walled Titanium Channel Section Columns
The paper deals with numerical and experimental investigations of the channel section column subjected to heating and compression at elevated temperature. The analyzed columns were made of titanium alloy (Grade 2) and simply supported on both ends. The research procedure involved initial compression...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198463/ https://www.ncbi.nlm.nih.gov/pubmed/34072362 http://dx.doi.org/10.3390/ma14112928 |
Sumario: | The paper deals with numerical and experimental investigations of the channel section column subjected to heating and compression at elevated temperature. The analyzed columns were made of titanium alloy (Grade 2) and simply supported on both ends. The research procedure involved initial compression of the column (i), heating the preloaded column (ii) and compression of the column at elevated temperature to failure (iii). The tests were performed at temperatures from 23 °C to 300 °C. Numerical calculations were carried out in the Ansys(®) software and involved the application of bilinear and multilinear isotropic hardening. It has been revealed that the temperature increase in a statically indeterminate system causes a decrease in the load-carrying capacity of the profile. An increase in temperature by 27 °C causes a reduction of the load-carrying capacity by 10%, while compression at temperature 300 °C reduces the nominal load-carrying capacity of the profile by half. Most of the proposed numerical procedures allowed for accurate estimation of reaction forces during heating and maximum compressive forces recorded during compression at elevated temperatures. The correctness of the determined material characteristics and the suitability of shell models for estimation of the response of a thin-walled structure subjected to thermomechanical loading was confirmed. |
---|