Cargando…
PCA-Based Denoising Algorithm for Outdoor Lidar Point Cloud Data
Due to the complexity of surrounding environments, lidar point cloud data (PCD) are often degraded by plane noise. In order to eliminate noise, this paper proposes a filtering scheme based on the grid principal component analysis (PCA) technique and the ground splicing method. The 3D PCD is first pr...
Autores principales: | Cheng, Dongyang, Zhao, Dangjun, Zhang, Junchao, Wei, Caisheng, Tian, Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198512/ https://www.ncbi.nlm.nih.gov/pubmed/34073498 http://dx.doi.org/10.3390/s21113703 |
Ejemplares similares
-
Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers
por: Tachella, Julián, et al.
Publicado: (2019) -
LiDAR Point Cloud Generation for SLAM Algorithm Evaluation
por: Sobczak, Łukasz, et al.
Publicado: (2021) -
New Denoising Method for Lidar Signal by the WT-VMD Joint Algorithm
por: Wang, Zhenzhu, et al.
Publicado: (2022) -
Point Density Variations in Airborne Lidar Point Clouds
por: Petras, Vaclav, et al.
Publicado: (2023) -
Aerial LiDAR Data Augmentation for Direct Point-Cloud Visualisation
por: Bohak, Ciril, et al.
Publicado: (2020)