Cargando…
Orchard Mapping with Deep Learning Semantic Segmentation
This study aimed to propose an approach for orchard trees segmentation using aerial images based on a deep learning convolutional neural network variant, namely the U-net network. The purpose was the automated detection and localization of the canopy of orchard trees under various conditions (i.e.,...
Autores principales: | Anagnostis, Athanasios, Tagarakis, Aristotelis C., Kateris, Dimitrios, Moysiadis, Vasileios, Sørensen, Claus Grøn, Pearson, Simon, Bochtis, Dionysis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198531/ https://www.ncbi.nlm.nih.gov/pubmed/34072975 http://dx.doi.org/10.3390/s21113813 |
Ejemplares similares
-
Human–Robot Interaction in Agriculture: A Systematic Review
por: Benos, Lefteris, et al.
Publicado: (2023) -
Proposing UGV and UAV Systems for 3D Mapping of Orchard Environments
por: Tagarakis, Aristotelis C., et al.
Publicado: (2022) -
Machine Learning in Agriculture: A Comprehensive Updated Review
por: Benos, Lefteris, et al.
Publicado: (2021) -
Sensors and Robotics for Digital Agriculture
por: Tagarakis, Aristotelis C., et al.
Publicado: (2023) -
A Survey of Robotic Harvesting Systems and Enabling Technologies
por: Droukas, Leonidas, et al.
Publicado: (2023)