Cargando…
A Review of EEG Signal Features and Their Application in Driver Drowsiness Detection Systems
Detecting drowsiness in drivers, especially multi-level drowsiness, is a difficult problem that is often approached using neurophysiological signals as the basis for building a reliable system. In this context, electroencephalogram (EEG) signals are the most important source of data to achieve succe...
Autores principales: | Stancin, Igor, Cifrek, Mario, Jovic, Alan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198610/ https://www.ncbi.nlm.nih.gov/pubmed/34070732 http://dx.doi.org/10.3390/s21113786 |
Ejemplares similares
-
EEG Signal Multichannel Frequency-Domain Ratio Indices for Drowsiness Detection Based on Multicriteria Optimization
por: Stancin, Igor, et al.
Publicado: (2021) -
Prediction of drowsiness using EEG signals in young Indonesian drivers
por: Puspasari, Maya Arlini, et al.
Publicado: (2023) -
A Context-Aware EEG Headset System for Early Detection of Driver Drowsiness
por: Li, Gang, et al.
Publicado: (2015) -
A Review of Recent Developments in Driver Drowsiness Detection Systems
por: Albadawi, Yaman, et al.
Publicado: (2022) -
Detecting Driver Drowsiness Based on Sensors: A Review
por: Sahayadhas, Arun, et al.
Publicado: (2012)