Cargando…

Adhesion Studies of CrC/a-C:H Coatings Deposited with Anode Assisted Reactive Magnetron Sputtering Combined with DC-Pulsed Plasma Enhanced Chemical Vapor Deposition

We studied the effect of CrC interlayers with different carbon contents on the adhesion of CrC/a-C:H coatings prepared by anode assisted reactive magnetron sputtering combined with DC-pulsed plasma enhanced chemical vapor deposition. The adhesion of the coating was measured by indentation and scratc...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Zhihong, Chen, Zhijie, Lang, Wenchang, Wang, Xianghong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198643/
https://www.ncbi.nlm.nih.gov/pubmed/34070819
http://dx.doi.org/10.3390/ma14112954
Descripción
Sumario:We studied the effect of CrC interlayers with different carbon contents on the adhesion of CrC/a-C:H coatings prepared by anode assisted reactive magnetron sputtering combined with DC-pulsed plasma enhanced chemical vapor deposition. The adhesion of the coating was measured by indentation and scratching. The coatings were characterized by Raman, XPS, SEM and Nanoindentation. The adhesion of the CrC/a-C:H coating is best when the carbon content in the interlayer of CrC is 44.5%, the scratch adhesion is 74 N, and the indentation adhesion is HF1. In this case, the elastic modulus of the interlayer CrC (284 GPa) is closest to that of the a-C:H layer (274 GPa). In conclusion, when there is no graphitization in the CrC interlayer, and the elastic modulus of the CrC interlayer is close to that of the a-C:H layer, the CrC/a-C:H coatings show the best adhesion.