Cargando…

Social Sensing of Heatwaves

Heatwaves cause thousands of deaths every year, yet the social impacts of heat are poorly measured. Temperature alone is not sufficient to measure impacts and “heatwaves” are defined differently in different cities/countries. This study used data from the microblogging platform Twitter to detect dif...

Descripción completa

Detalles Bibliográficos
Autores principales: Young, James C., Arthur, Rudy, Spruce, Michelle, Williams, Hywel T. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198698/
https://www.ncbi.nlm.nih.gov/pubmed/34073608
http://dx.doi.org/10.3390/s21113717
Descripción
Sumario:Heatwaves cause thousands of deaths every year, yet the social impacts of heat are poorly measured. Temperature alone is not sufficient to measure impacts and “heatwaves” are defined differently in different cities/countries. This study used data from the microblogging platform Twitter to detect different scales of response and varying attitudes to heatwaves within the United Kingdom (UK), the United States of America (US) and Australia. At the country scale, the volume of heat-related Twitter activity increased exponentially as temperature increased. The initial social reaction differed between countries, with a larger response to heatwaves elicited from the UK than from Australia, despite the comparatively milder conditions in the UK. Language analysis reveals that the UK user population typically responds with concern for individual wellbeing and discomfort, whereas Australian and US users typically focus on the environmental consequences. At the city scale, differing responses are seen in London, Sydney and New York on governmentally defined heatwave days; sentiment changes predictably in London and New York over a 24-h period, while sentiment is more constant in Sydney. This study shows that social media data can provide robust observations of public response to heat, suggesting that social sensing of heatwaves might be useful for preparedness and mitigation.