Cargando…
Whole-Lesion Apparent Diffusion Coefficient Histogram Analysis: Significance for Discriminating Lung Cancer from Pulmonary Abscess and Mycobacterial Infection
SIMPLE SUMMARY: Diffusion-weighted magnetic resonance imaging (DWI) can differentiate malignant from benign pulmonary nodules and masses. However, it is difficult to differentiate pulmonary abscesses and mycobacterium infections (PAMIs) from lung cancers because PAMIs show restricted diffusion in DW...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198705/ https://www.ncbi.nlm.nih.gov/pubmed/34072867 http://dx.doi.org/10.3390/cancers13112720 |
Sumario: | SIMPLE SUMMARY: Diffusion-weighted magnetic resonance imaging (DWI) can differentiate malignant from benign pulmonary nodules and masses. However, it is difficult to differentiate pulmonary abscesses and mycobacterium infections (PAMIs) from lung cancers because PAMIs show restricted diffusion in DWI. The purpose of this study was to establish the role of ADC histogram for differentiating lung cancer from PAMI. There were 41 lung cancers and 19 PAMIs. Parameters more than 60% of AUC were ADC, maximal ADC, mean ADC, median ADC, most frequency ADC, kurtosis of ADC, and volume of lesion. There were significant differences between lung cancer and PAMI in ADC, mean ADC, median ADC, and most frequency ADC. ADC histogram has the potential to be a valuable tool to differentiate PAMI from lung cancer. ABSTRACT: Diffusion-weighted magnetic resonance imaging (DWI) can differentiate malignant from benign pulmonary nodules. However, it is difficult to differentiate pulmonary abscesses and mycobacterial infections (PAMIs) from lung cancers because PAMIs show restricted diffusion in DWI. The study purpose is to establish the role of ADC histogram for differentiating lung cancer from PAMI. There were 41 lung cancers (25 adenocarcinomas, 16 squamous cell carcinomas), and 19 PAMIs (9 pulmonary abscesses, 10 mycobacterial infections). Parameters more than 60% of the area under the ROC curve (AUC) were ADC, maximal ADC, mean ADC, median ADC, most frequency ADC, kurtosis of ADC, and volume of lesion. There were significant differences between lung cancer and PAMI in ADC, mean ADC, median ADC, and most frequency ADC. The ADC (1.19 ± 0.29 × 10(−3) mm(2)/s) of lung cancer obtained from a single slice was significantly lower than that (1.44 ± 0.54) of PAMI (p = 0.0262). In contrast, mean, median, or most frequency ADC of lung cancer which was obtained in the ADC histogram was significantly higher than the value of each parameter of PAMI. ADC histogram could discriminate PAMIs from lung cancers by showing that AUCs of several parameters were more than 60%, and that several parameters of ADC of PAMI were significantly lower than those of lung cancer. ADC histogram has the potential to be a valuable tool to differentiate PAMI from lung cancer. |
---|