Cargando…
Optimization of Optical Machine Structure by Backpropagation Neural Network Based on Particle Swarm Optimization and Bayesian Regularization Algorithms
Fit of the highly nonlinear functional relationship between input variables and output response is important and challenging for the optical machine structure optimization design process. The backpropagation neural network method based on particle swarm optimization and Bayesian regularization algor...
Autores principales: | Zhang, Xinyong, Sun, Liwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198718/ https://www.ncbi.nlm.nih.gov/pubmed/34205951 http://dx.doi.org/10.3390/ma14112998 |
Ejemplares similares
-
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
por: Yan, Yulong, et al.
Publicado: (2022) -
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
por: Garro, Beatriz A., et al.
Publicado: (2015) -
Optimized backpropagation neural network for risk prediction in corporate financial management
por: Gu, Lingzi
Publicado: (2023) -
Particle Swarm Optimization and Salp Swarm Algorithm for the Segmentation of Diabetic Retinal Blood Vessel Images
por: Deng, Liwei, et al.
Publicado: (2022) -
Development of a particle swarm optimization-backpropagation artificial neural network model and effects of age and gender on pharmacokinetics study of omeprazole enteric-coated tablets in Chinese population
por: Xu, Yichao, et al.
Publicado: (2022)