Cargando…

Charpy Impact Behavior of a Novel Stainless Steel Powder Wire Mesh Composite Porous Plate

A novel powder wire mesh composite porous plate (PWMCPP) was fabricated with 304 stainless steel powders and wire mesh as raw materials by vacuum solid-state sintering process using self-developed composite rolling mill of powder and wire mesh. The effects of different mesh volume fractions, mesh di...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chaozhong, Zhou, Zhaoyao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198794/
https://www.ncbi.nlm.nih.gov/pubmed/34071617
http://dx.doi.org/10.3390/ma14112924
Descripción
Sumario:A novel powder wire mesh composite porous plate (PWMCPP) was fabricated with 304 stainless steel powders and wire mesh as raw materials by vacuum solid-state sintering process using self-developed composite rolling mill of powder and wire mesh. The effects of different mesh volume fractions, mesh diameters, and sintering temperatures on the pore structure and Charpy impact properties of PWMCPPs were studied. The results show that PWMCPPs have different shapes and sizes of micropores. Impact toughness of PWMCPPs decreases with increasing wire mesh volume fraction, and increases first and then decreases with increasing wire mesh diameter, and increases with increasing sintering temperature. Among them, the sintering temperature has the most obvious effect on the impact toughness of PWMCPPs, when the sintering temperature increased from 1160 °C to 1360 °C, the impact toughness increased from 39.54 J/cm(2) to 72.95 J/cm(2), with an increased ratio of 84.5%. The tearing between layers, the fracture of the metallurgical junction, and the fracture of wire mesh are the main mechanisms of impact fractures of the novel PWMCPPs.