Cargando…

Cross-Linked Chitosan/Multi-Walled Carbon Nanotubes Composite as Ecofriendly Biocatalyst for Synthesis of Some Novel Benzil Bis-Thiazoles

Aminohydrazide cross-linked chitosan (CLCS) and its MWCNTs (CLCS/MWCNTs) were formulated and utilized as a potent ecofriendly basic heterogeneous biocatalyst under ultrasonic irradiation for synthesis of two novel series of benzil bis-aryldiazenylthiazoles and benzil bis-arylhydrazonothiazolones fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Alshabanah, Latifah A., Gomha, Sobhi M., Al-Mutabagani, Laila A., Abolibda, Tariq Z., El-Ghany, Nahed A. Abd, El-Enany, Waleed A. M. A., El-Ziaty, Ahmed K., Ali, Rania S., Mohamed, Nadia A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198799/
https://www.ncbi.nlm.nih.gov/pubmed/34070526
http://dx.doi.org/10.3390/polym13111728
Descripción
Sumario:Aminohydrazide cross-linked chitosan (CLCS) and its MWCNTs (CLCS/MWCNTs) were formulated and utilized as a potent ecofriendly basic heterogeneous biocatalyst under ultrasonic irradiation for synthesis of two novel series of benzil bis-aryldiazenylthiazoles and benzil bis-arylhydrazonothiazolones from the reaction of benzil bis-thiosemicarbazone with 2-oxo-N′-arylpropanehydrazonoyl chlorides and ethyl 2-chloro-2-(2-phenylhydrazono) acetates, respectively. The chemical structures of the newly synthesized derivatives were elucidated by spectral data and alternative methods, where available. Additionally, their yield % was estimated using a traditional catalyst as TEA and green recyclable catalysts as CLCS and CLCS/MWCNTs composite in a comparative study. We observed that, under the same reaction conditions, the yield % of the desired products increased by changing TEA to CLCS then to CLCS/MWCNT from 72–78% to 79–83% to 84–87%, respectively. The thermal stability of the investigated samples could be arranged as CLCS/MWCNTs composite > CLCS > chitosan, where the weight losses of chitosan, CLCS and CLCS/MWCNTs composite at 500 °C were 65.46%, 57.95% and 53.29%, respectively.