Cargando…
Design and Calibration of a Hall Effect System for Measurement of Six-Degree-of-Freedom Motion within a Stacked Column
This paper presents the design, development and evaluation of a unique non-contact instrumentation system that can accurately measure the interface displacement between two rigid components in six degrees of freedom. The system was developed to allow measurement of the relative displacements between...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198809/ https://www.ncbi.nlm.nih.gov/pubmed/34072278 http://dx.doi.org/10.3390/s21113740 |
_version_ | 1783707227173945344 |
---|---|
author | Oddbjornsson, Olafur Kloukinas, Panos Gokce, Tansu Bourne, Kate Horseman, Tony Dihoru, Luiza Dietz, Matt White, Rory E. Crewe, Adam J. Taylor, Colin A. |
author_facet | Oddbjornsson, Olafur Kloukinas, Panos Gokce, Tansu Bourne, Kate Horseman, Tony Dihoru, Luiza Dietz, Matt White, Rory E. Crewe, Adam J. Taylor, Colin A. |
author_sort | Oddbjornsson, Olafur |
collection | PubMed |
description | This paper presents the design, development and evaluation of a unique non-contact instrumentation system that can accurately measure the interface displacement between two rigid components in six degrees of freedom. The system was developed to allow measurement of the relative displacements between interfaces within a stacked column of brick-like components, with an accuracy of 0.05 mm and 0.1 degrees. The columns comprised up to 14 components, with each component being a scale model of a graphite brick within an Advanced Gas-cooled Reactor core. A set of 585 of these columns makes up the Multi Layer Array, which was designed to investigate the response of the reactor core to seismic inputs, with excitation levels up to 1 g from 0 to 100 Hz. The nature of the application required a compact and robust design capable of accurately recording fully coupled motion in all six degrees of freedom during dynamic testing. The novel design implemented 12 Hall effect sensors with a calibration procedure based on system identification techniques. The measurement uncertainty was ±0.050 mm for displacement and ±0.052 degrees for rotation, and the system can tolerate loss of data from two sensors with the uncertainly increasing to only 0.061 mm in translation and 0.088 degrees in rotation. The system has been deployed in a research programme that has enabled EDF to present seismic safety cases to the Office for Nuclear Regulation, resulting in life extension approvals for several reactors. The measurement system developed could be readily applied to other situations where the imposed level of stress at the interface causes negligible material strain, and accurate non-contact six-degree-of-freedom interface measurement is required. |
format | Online Article Text |
id | pubmed-8198809 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81988092021-06-14 Design and Calibration of a Hall Effect System for Measurement of Six-Degree-of-Freedom Motion within a Stacked Column Oddbjornsson, Olafur Kloukinas, Panos Gokce, Tansu Bourne, Kate Horseman, Tony Dihoru, Luiza Dietz, Matt White, Rory E. Crewe, Adam J. Taylor, Colin A. Sensors (Basel) Article This paper presents the design, development and evaluation of a unique non-contact instrumentation system that can accurately measure the interface displacement between two rigid components in six degrees of freedom. The system was developed to allow measurement of the relative displacements between interfaces within a stacked column of brick-like components, with an accuracy of 0.05 mm and 0.1 degrees. The columns comprised up to 14 components, with each component being a scale model of a graphite brick within an Advanced Gas-cooled Reactor core. A set of 585 of these columns makes up the Multi Layer Array, which was designed to investigate the response of the reactor core to seismic inputs, with excitation levels up to 1 g from 0 to 100 Hz. The nature of the application required a compact and robust design capable of accurately recording fully coupled motion in all six degrees of freedom during dynamic testing. The novel design implemented 12 Hall effect sensors with a calibration procedure based on system identification techniques. The measurement uncertainty was ±0.050 mm for displacement and ±0.052 degrees for rotation, and the system can tolerate loss of data from two sensors with the uncertainly increasing to only 0.061 mm in translation and 0.088 degrees in rotation. The system has been deployed in a research programme that has enabled EDF to present seismic safety cases to the Office for Nuclear Regulation, resulting in life extension approvals for several reactors. The measurement system developed could be readily applied to other situations where the imposed level of stress at the interface causes negligible material strain, and accurate non-contact six-degree-of-freedom interface measurement is required. MDPI 2021-05-27 /pmc/articles/PMC8198809/ /pubmed/34072278 http://dx.doi.org/10.3390/s21113740 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Oddbjornsson, Olafur Kloukinas, Panos Gokce, Tansu Bourne, Kate Horseman, Tony Dihoru, Luiza Dietz, Matt White, Rory E. Crewe, Adam J. Taylor, Colin A. Design and Calibration of a Hall Effect System for Measurement of Six-Degree-of-Freedom Motion within a Stacked Column |
title | Design and Calibration of a Hall Effect System for Measurement of Six-Degree-of-Freedom Motion within a Stacked Column |
title_full | Design and Calibration of a Hall Effect System for Measurement of Six-Degree-of-Freedom Motion within a Stacked Column |
title_fullStr | Design and Calibration of a Hall Effect System for Measurement of Six-Degree-of-Freedom Motion within a Stacked Column |
title_full_unstemmed | Design and Calibration of a Hall Effect System for Measurement of Six-Degree-of-Freedom Motion within a Stacked Column |
title_short | Design and Calibration of a Hall Effect System for Measurement of Six-Degree-of-Freedom Motion within a Stacked Column |
title_sort | design and calibration of a hall effect system for measurement of six-degree-of-freedom motion within a stacked column |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198809/ https://www.ncbi.nlm.nih.gov/pubmed/34072278 http://dx.doi.org/10.3390/s21113740 |
work_keys_str_mv | AT oddbjornssonolafur designandcalibrationofahalleffectsystemformeasurementofsixdegreeoffreedommotionwithinastackedcolumn AT kloukinaspanos designandcalibrationofahalleffectsystemformeasurementofsixdegreeoffreedommotionwithinastackedcolumn AT gokcetansu designandcalibrationofahalleffectsystemformeasurementofsixdegreeoffreedommotionwithinastackedcolumn AT bournekate designandcalibrationofahalleffectsystemformeasurementofsixdegreeoffreedommotionwithinastackedcolumn AT horsemantony designandcalibrationofahalleffectsystemformeasurementofsixdegreeoffreedommotionwithinastackedcolumn AT dihoruluiza designandcalibrationofahalleffectsystemformeasurementofsixdegreeoffreedommotionwithinastackedcolumn AT dietzmatt designandcalibrationofahalleffectsystemformeasurementofsixdegreeoffreedommotionwithinastackedcolumn AT whiterorye designandcalibrationofahalleffectsystemformeasurementofsixdegreeoffreedommotionwithinastackedcolumn AT creweadamj designandcalibrationofahalleffectsystemformeasurementofsixdegreeoffreedommotionwithinastackedcolumn AT taylorcolina designandcalibrationofahalleffectsystemformeasurementofsixdegreeoffreedommotionwithinastackedcolumn |