Cargando…
Congested Crowd Counting via Adaptive Multi-Scale Context Learning †
In this paper, we propose a novel congested crowd counting network for crowd density estimation, i.e., the Adaptive Multi-scale Context Aggregation Network (MSCANet). MSCANet efficiently leverages the spatial context information to accomplish crowd density estimation in a complicated crowd scene. To...
Autores principales: | Zhang, Yani, Zhao, Huailin, Duan, Zuodong, Huang, Liangjun, Deng, Jiahao, Zhang, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198824/ https://www.ncbi.nlm.nih.gov/pubmed/34072408 http://dx.doi.org/10.3390/s21113777 |
Ejemplares similares
-
COMAL: compositional multi-scale feature enhanced learning for crowd counting
por: Zhou, Fangbo, et al.
Publicado: (2022) -
Context-Aware Multi-Scale Aggregation Network for Congested Crowd Counting
por: Huang, Liangjun, et al.
Publicado: (2022) -
An Adaptive Multi-Scale Network Based on Depth Information for Crowd Counting †
por: Zhang, Peng, et al.
Publicado: (2023) -
Meta-Knowledge and Multi-Task Learning-Based Multi-Scene Adaptive Crowd Counting
por: Tang, Siqi, et al.
Publicado: (2022) -
DMPNet: densely connected multi-scale pyramid networks for crowd counting
por: Li, Pengfei, et al.
Publicado: (2022)