Cargando…

Holographic Grating Enhancement of TI/PMMA Polymers in the Dark Diffusion Process

The dark diffusion enhancement process (DDEP) caused by photopolymerization during the pre-exposure of TI/PMMA (titanocene dispersed methyl methacrylate matrix) polymers was theoretically analyzed and experimentally investigated, revealing the holographic grating enhancement of TI/PMMA polymers in t...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Peng, Sun, Xiudong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198872/
https://www.ncbi.nlm.nih.gov/pubmed/34073278
http://dx.doi.org/10.3390/polym13111735
Descripción
Sumario:The dark diffusion enhancement process (DDEP) caused by photopolymerization during the pre-exposure of TI/PMMA (titanocene dispersed methyl methacrylate matrix) polymers was theoretically analyzed and experimentally investigated, revealing the holographic grating enhancement of TI/PMMA polymers in the post-exposure process without additional operations. The diffusion of photo-initiators and photoproducts dominated the grating enhancement process after exposure. We adopted two pre-exposure methods, long-time (second level) and short-time (millisecond level) laser exposure, at 532 nm, to investigate the DDEP during the post-exposure process. A five-fold enhancement in grating strength was achieved in consecutive long-time pre-exposures, while a two-fold grating development was examined after short-time exposure. Additionally, the exposure durations and repetition rates influenced the grating increment of the DDEP. This study provided a basis for the feasibility of holographic application in TI/PMMA photopolymers via the dark diffusion effect.