Cargando…
Spark Plasma Sintering of LiFePO(4): AC Field Suppressing Lithium Migration
Our work proposes a comparison between Spark Plasma Sintering of LiFePO(4) carried out using an Alternating Current (AC) and Direct Current (DC). It quantifies the Li-ion migration using DC, and it validates such hypothesis using impedance spectroscopy, X-ray photoelectron spectroscopy and inductive...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198947/ https://www.ncbi.nlm.nih.gov/pubmed/34070590 http://dx.doi.org/10.3390/ma14112826 |
Sumario: | Our work proposes a comparison between Spark Plasma Sintering of LiFePO(4) carried out using an Alternating Current (AC) and Direct Current (DC). It quantifies the Li-ion migration using DC, and it validates such hypothesis using impedance spectroscopy, X-ray photoelectron spectroscopy and inductively coupled plasma optical emission spectroscopy. The use of an AC field seems effective to inhibit undesired Li-ion migration and achieve high ionic conductivity as high as 4.5 × 10(−3) S/cm, which exceeds by one order of magnitude samples processed under a DC field. These results anticipate the possibility of fabricating a high-performance all-solid-state Li-ion battery by preventing undesired Li loss during SPS processing. |
---|