Cargando…
Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat Calvaria
Bone defects are a challenging clinical situation, and the development of hydroxyapatite-based biomaterials is a prolific research field that, in addition, can be joined by stem cells and growth factors in order to deal with the problem. This study compares the use of synthetic hydroxyapatite and xe...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199028/ https://www.ncbi.nlm.nih.gov/pubmed/34073482 http://dx.doi.org/10.3390/ma14112854 |
_version_ | 1783707279448604672 |
---|---|
author | Pires, Jorge Luís da Silva de Carvalho, Jorge José Pereira, Mario José dos Santos Brum, Igor da Silva Nascimento, Ana Lucia Rosa dos Santos, Paulo Gonçalo Pinto Frigo, Lucio Fischer, Ricardo Guimaraes |
author_facet | Pires, Jorge Luís da Silva de Carvalho, Jorge José Pereira, Mario José dos Santos Brum, Igor da Silva Nascimento, Ana Lucia Rosa dos Santos, Paulo Gonçalo Pinto Frigo, Lucio Fischer, Ricardo Guimaraes |
author_sort | Pires, Jorge Luís da Silva |
collection | PubMed |
description | Bone defects are a challenging clinical situation, and the development of hydroxyapatite-based biomaterials is a prolific research field that, in addition, can be joined by stem cells and growth factors in order to deal with the problem. This study compares the use of synthetic hydroxyapatite and xenograft, used pure or enriched with bone marrow mononuclear fraction for the regeneration of critical size bone defects in rat calvaria through histomorphometric (Masson’s staining) and immunohistochemical (anti-VEGF, anti-osteopontin) analysis. Forty young adult male rats were divided into five groups (n = 8). Animals were submitted to critical size bone defects (Ø = 8 mm) in the temporoparietal region. In the control group, there was no biomaterial placement in the critical bone defects; in group 1, it was filled with synthetic hydroxyapatite; in group 2, it was filled with xenograft; in group 3, it was filled with synthetic hydroxyapatite, enriched with bone marrow mononuclear fraction (BMMF), and in group 4 it was filled with xenograft, enriched with BMMF. After eight weeks, all groups were euthanized, and histological section images were captured and analyzed. Data analysis showed that in groups 1, 2, 3 and 4 (received biomaterials and biomaterials plus BMMF), a significant enhancement in new bone matrix formation was observed in relation to the control group. However, BMMF-enriched groups did not differ from hydroxyapatite-based biomaterials-only groups. Therefore, in this experimental model, BMMF did not enhance hydroxyapatite-based biomaterials’ potential to induce bone matrix and related mediators. |
format | Online Article Text |
id | pubmed-8199028 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81990282021-06-14 Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat Calvaria Pires, Jorge Luís da Silva de Carvalho, Jorge José Pereira, Mario José dos Santos Brum, Igor da Silva Nascimento, Ana Lucia Rosa dos Santos, Paulo Gonçalo Pinto Frigo, Lucio Fischer, Ricardo Guimaraes Materials (Basel) Article Bone defects are a challenging clinical situation, and the development of hydroxyapatite-based biomaterials is a prolific research field that, in addition, can be joined by stem cells and growth factors in order to deal with the problem. This study compares the use of synthetic hydroxyapatite and xenograft, used pure or enriched with bone marrow mononuclear fraction for the regeneration of critical size bone defects in rat calvaria through histomorphometric (Masson’s staining) and immunohistochemical (anti-VEGF, anti-osteopontin) analysis. Forty young adult male rats were divided into five groups (n = 8). Animals were submitted to critical size bone defects (Ø = 8 mm) in the temporoparietal region. In the control group, there was no biomaterial placement in the critical bone defects; in group 1, it was filled with synthetic hydroxyapatite; in group 2, it was filled with xenograft; in group 3, it was filled with synthetic hydroxyapatite, enriched with bone marrow mononuclear fraction (BMMF), and in group 4 it was filled with xenograft, enriched with BMMF. After eight weeks, all groups were euthanized, and histological section images were captured and analyzed. Data analysis showed that in groups 1, 2, 3 and 4 (received biomaterials and biomaterials plus BMMF), a significant enhancement in new bone matrix formation was observed in relation to the control group. However, BMMF-enriched groups did not differ from hydroxyapatite-based biomaterials-only groups. Therefore, in this experimental model, BMMF did not enhance hydroxyapatite-based biomaterials’ potential to induce bone matrix and related mediators. MDPI 2021-05-26 /pmc/articles/PMC8199028/ /pubmed/34073482 http://dx.doi.org/10.3390/ma14112854 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pires, Jorge Luís da Silva de Carvalho, Jorge José Pereira, Mario José dos Santos Brum, Igor da Silva Nascimento, Ana Lucia Rosa dos Santos, Paulo Gonçalo Pinto Frigo, Lucio Fischer, Ricardo Guimaraes Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat Calvaria |
title | Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat Calvaria |
title_full | Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat Calvaria |
title_fullStr | Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat Calvaria |
title_full_unstemmed | Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat Calvaria |
title_short | Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat Calvaria |
title_sort | repair of critical size bone defects using synthetic hydroxyapatite or xenograft with or without the bone marrow mononuclear fraction: a histomorphometric and immunohistochemical study in rat calvaria |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199028/ https://www.ncbi.nlm.nih.gov/pubmed/34073482 http://dx.doi.org/10.3390/ma14112854 |
work_keys_str_mv | AT piresjorgeluisdasilva repairofcriticalsizebonedefectsusingsynthetichydroxyapatiteorxenograftwithorwithoutthebonemarrowmononuclearfractionahistomorphometricandimmunohistochemicalstudyinratcalvaria AT decarvalhojorgejose repairofcriticalsizebonedefectsusingsynthetichydroxyapatiteorxenograftwithorwithoutthebonemarrowmononuclearfractionahistomorphometricandimmunohistochemicalstudyinratcalvaria AT pereiramariojosedossantos repairofcriticalsizebonedefectsusingsynthetichydroxyapatiteorxenograftwithorwithoutthebonemarrowmononuclearfractionahistomorphometricandimmunohistochemicalstudyinratcalvaria AT brumigordasilva repairofcriticalsizebonedefectsusingsynthetichydroxyapatiteorxenograftwithorwithoutthebonemarrowmononuclearfractionahistomorphometricandimmunohistochemicalstudyinratcalvaria AT nascimentoanaluciarosa repairofcriticalsizebonedefectsusingsynthetichydroxyapatiteorxenograftwithorwithoutthebonemarrowmononuclearfractionahistomorphometricandimmunohistochemicalstudyinratcalvaria AT dossantospaulogoncalopinto repairofcriticalsizebonedefectsusingsynthetichydroxyapatiteorxenograftwithorwithoutthebonemarrowmononuclearfractionahistomorphometricandimmunohistochemicalstudyinratcalvaria AT frigolucio repairofcriticalsizebonedefectsusingsynthetichydroxyapatiteorxenograftwithorwithoutthebonemarrowmononuclearfractionahistomorphometricandimmunohistochemicalstudyinratcalvaria AT fischerricardoguimaraes repairofcriticalsizebonedefectsusingsynthetichydroxyapatiteorxenograftwithorwithoutthebonemarrowmononuclearfractionahistomorphometricandimmunohistochemicalstudyinratcalvaria |