Cargando…
High-Temperature Monitoring in Central Receiver Concentrating Solar Power Plants with Femtosecond-Laser Inscribed FBG
This work deals with the application of femtosecond-laser-inscribed fiber Bragg gratings (FsFBGs) for monitoring the internal high-temperature surface distribution (HTSD) in solar receivers of concentrating solar power (CSP) plants. The fiber-optic sensor system is composed of 12 FsFBGs measuring po...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199103/ https://www.ncbi.nlm.nih.gov/pubmed/34071583 http://dx.doi.org/10.3390/s21113762 |
_version_ | 1783707297561706496 |
---|---|
author | Rodríguez-Garrido, Roberto Carballar, Alejandro Vera, Jonathan González-Aguilar, José Altamirano, Adeodato Loureiro, Antonio Pereira, Daniel |
author_facet | Rodríguez-Garrido, Roberto Carballar, Alejandro Vera, Jonathan González-Aguilar, José Altamirano, Adeodato Loureiro, Antonio Pereira, Daniel |
author_sort | Rodríguez-Garrido, Roberto |
collection | PubMed |
description | This work deals with the application of femtosecond-laser-inscribed fiber Bragg gratings (FsFBGs) for monitoring the internal high-temperature surface distribution (HTSD) in solar receivers of concentrating solar power (CSP) plants. The fiber-optic sensor system is composed of 12 FsFBGs measuring points distributed on an area of 0.4 m(2), which leads to obtain the temperature map at the receiver by means of two-dimensional interpolation. An analysis of the FsFBG performance in harsh environment was also conducted. It describes the influence of calibration functions in high-temperature measurements, determines a required 10 nm spectral interval for measuring temperatures in the range from 0 to 700 °C, and reveals wavelength peak tolerances in the FsFBG fabrication process. Results demonstrate the viability and reliability of this measuring technique, with temperature measurements up to 566 °C. |
format | Online Article Text |
id | pubmed-8199103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81991032021-06-14 High-Temperature Monitoring in Central Receiver Concentrating Solar Power Plants with Femtosecond-Laser Inscribed FBG Rodríguez-Garrido, Roberto Carballar, Alejandro Vera, Jonathan González-Aguilar, José Altamirano, Adeodato Loureiro, Antonio Pereira, Daniel Sensors (Basel) Article This work deals with the application of femtosecond-laser-inscribed fiber Bragg gratings (FsFBGs) for monitoring the internal high-temperature surface distribution (HTSD) in solar receivers of concentrating solar power (CSP) plants. The fiber-optic sensor system is composed of 12 FsFBGs measuring points distributed on an area of 0.4 m(2), which leads to obtain the temperature map at the receiver by means of two-dimensional interpolation. An analysis of the FsFBG performance in harsh environment was also conducted. It describes the influence of calibration functions in high-temperature measurements, determines a required 10 nm spectral interval for measuring temperatures in the range from 0 to 700 °C, and reveals wavelength peak tolerances in the FsFBG fabrication process. Results demonstrate the viability and reliability of this measuring technique, with temperature measurements up to 566 °C. MDPI 2021-05-28 /pmc/articles/PMC8199103/ /pubmed/34071583 http://dx.doi.org/10.3390/s21113762 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rodríguez-Garrido, Roberto Carballar, Alejandro Vera, Jonathan González-Aguilar, José Altamirano, Adeodato Loureiro, Antonio Pereira, Daniel High-Temperature Monitoring in Central Receiver Concentrating Solar Power Plants with Femtosecond-Laser Inscribed FBG |
title | High-Temperature Monitoring in Central Receiver Concentrating Solar Power Plants with Femtosecond-Laser Inscribed FBG |
title_full | High-Temperature Monitoring in Central Receiver Concentrating Solar Power Plants with Femtosecond-Laser Inscribed FBG |
title_fullStr | High-Temperature Monitoring in Central Receiver Concentrating Solar Power Plants with Femtosecond-Laser Inscribed FBG |
title_full_unstemmed | High-Temperature Monitoring in Central Receiver Concentrating Solar Power Plants with Femtosecond-Laser Inscribed FBG |
title_short | High-Temperature Monitoring in Central Receiver Concentrating Solar Power Plants with Femtosecond-Laser Inscribed FBG |
title_sort | high-temperature monitoring in central receiver concentrating solar power plants with femtosecond-laser inscribed fbg |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199103/ https://www.ncbi.nlm.nih.gov/pubmed/34071583 http://dx.doi.org/10.3390/s21113762 |
work_keys_str_mv | AT rodriguezgarridoroberto hightemperaturemonitoringincentralreceiverconcentratingsolarpowerplantswithfemtosecondlaserinscribedfbg AT carballaralejandro hightemperaturemonitoringincentralreceiverconcentratingsolarpowerplantswithfemtosecondlaserinscribedfbg AT verajonathan hightemperaturemonitoringincentralreceiverconcentratingsolarpowerplantswithfemtosecondlaserinscribedfbg AT gonzalezaguilarjose hightemperaturemonitoringincentralreceiverconcentratingsolarpowerplantswithfemtosecondlaserinscribedfbg AT altamiranoadeodato hightemperaturemonitoringincentralreceiverconcentratingsolarpowerplantswithfemtosecondlaserinscribedfbg AT loureiroantonio hightemperaturemonitoringincentralreceiverconcentratingsolarpowerplantswithfemtosecondlaserinscribedfbg AT pereiradaniel hightemperaturemonitoringincentralreceiverconcentratingsolarpowerplantswithfemtosecondlaserinscribedfbg |