Cargando…
The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia
Hypoxia inducible factor-1α (HIF-1α) up-regulates the expression of programmed death ligand-1 (PD-L1) in some extracranial malignancies. However, whether it could increase PD-L1 expression in intracranial tumor is still unknown. Here, we explored the relationship between HIF-1α and PD-L1 expression...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199387/ https://www.ncbi.nlm.nih.gov/pubmed/34118979 http://dx.doi.org/10.1186/s13045-021-01102-5 |
Sumario: | Hypoxia inducible factor-1α (HIF-1α) up-regulates the expression of programmed death ligand-1 (PD-L1) in some extracranial malignancies. However, whether it could increase PD-L1 expression in intracranial tumor is still unknown. Here, we explored the relationship between HIF-1α and PD-L1 expression in glioma, and investigated their clinical significance. In glioma patients, HIF-1α and PD-L1 were overexpressed in high grade glioma tissues and were significantly associated with poor survival. In glioma cells, PD-L1 expression was induced under hypoxia condition, and the enhanced PD-L1 expression was abrogated by either HIF-1α knock-down or HIF-1α inhibitor treatment. Furthermore, ChIP-qPCR analysis showed the direct binding of HIF-1α to PD-L1 proximal promoter region, providing evidence that HIF-1α up-regulates PD-L1 in glioma. In glioma murine model, the combination treatment with HIF-1α inhibitor and anti-PD-L1 antibody caused a more pronounced suppressive effect on tumor growth compared to either monotherapy. Immunologically, the combination treatment improved both dendritic cell (DC) and CD8(+) T cell activation. Overall, our results demonstrated that positive correlation between PD-L1 and HIF-1α in glioma, and provide an alternative strategy, inhibiting HIF-1α, as combination therapies with immunotherapies to advance glioma treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13045-021-01102-5. |
---|